Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Fish Biol ; 103(2): 324-335, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37169731

ABSTRACT

Density-dependent mechanisms and habitat use are important drivers of marine spatial distribution in complex ecosystems such as coral or rocky reefs. In the last decade, a few studies have assessed habitat use by reef fishes in nearshore and coastal environments along the Brazilian coast. Serranidae (groupers and sea basses) are regarded as excellent models for understanding habitat use patterns due to their diversity, long lifespan, wide distribution, morphological and functional diversity, and behavioural complexity. Their trophic position in the food web, from meso- to top-predators, grants them critical roles as top-down population controllers. Herein, we present the first assessment of habitat use by five sympatric Serranidae in a Brazilian oceanic island, Trindade. The model species selected for this assessment were the coney (Cephalopholis fulva), the rock hind (Epinephelus adscensionis), the greater soapfish (Rypticus saponaceus), the Creole-fish (Paranthias furcifer) and the hybrid between C. fulva and P. furcifer. Our findings revealed that the species showed specific associations with topographic characteristics related to shelter from predation, reproduction and feeding. Habitat use in Trindade was similar to that observed in nearshore coastal environments (where the hybrid is absent). The present work contributes to the knowledge of habitat use and niche partitioning among key species, which is a valuable tool to subsidize effective conservation initiatives such as designing marine protected areas focusing on the behaviour and habitat use of key ecological players.


Subject(s)
Anthozoa , Bass , Animals , Ecosystem , Predatory Behavior , Fishes , Food Chain , Coral Reefs
2.
J Environ Manage ; 340: 117954, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37119623

ABSTRACT

After successful invasions in the Caribbean and Mediterranean, lionfish (Pterois spp.) have recently invaded another important biogeographical region -the Brazilian Province. In this article, we discuss this new invasion, focusing on a roadmap for urgent mitigation of the problem, as well as focused research and management strategies. The invasion in Brazil is already in the consolidation stage, with 352 individuals recorded so far (2020-2023) along 2766 km of coastline. This includes both juveniles and adults, including egg-bearing females, ranging in length from 9.1 to 38.5 cm. Until now, most of the records in the Brazilian coast occurred in the equatorial southwestern Atlantic (99%), mainly on the Amazon mesophotic reefs (15% of the records), northeastern coast of Brazil (45%), and the Fernando de Noronha Archipelago (41%; an UNESCO World Heritage Site with high endemism rate). These records cover a broad depth range (1-110 m depth), twelve protected areas, eight Brazilian states (Amapá, Pará, Maranhão, Piauí, Ceará, Rio Grande do Norte, Paraíba, and Pernambuco) and multiple habitats (i.e., mangrove estuaries, shallow-water and mesophotic reefs, seagrass beds, artificial reefs, and sandbanks), indicating a rapid and successful invasion process in Brazilian waters. In addition, the lack of local knowledge of rare and/or cryptic native species that are potentially vulnerable to lionfish predation raises concerns regarding the potential overlooked ecological impacts. Thus, we call for an urgent integrated approach with multiple stakeholders and solution-based ecological research, real-time inventories, update of environmental and fishery legislation, participatory monitoring supported by citizen science, and a national and unified plan aimed at decreasing the impact of lionfish invasion. The experience acquired by understanding the invasion process in the Caribbean and Mediterranean will help to establish and prioritize goals for Brazil.


Subject(s)
Ecosystem , Perciformes , Humans , Animals , Brazil , Caribbean Region , Predatory Behavior , Introduced Species
3.
Glob Ecol Biogeogr ; 31(7): 1399-1421, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35915625

ABSTRACT

Aim: Understanding the variation in community composition and species abundances (i.e., ß-diversity) is at the heart of community ecology. A common approach to examine ß-diversity is to evaluate directional variation in community composition by measuring the decay in the similarity among pairs of communities along spatial or environmental distance. We provide the first global synthesis of taxonomic and functional distance decay along spatial and environmental distance by analysing 148 datasets comprising different types of organisms and environments. Location: Global. Time period: 1990 to present. Major taxa studied: From diatoms to mammals. Method: We measured the strength of the decay using ranked Mantel tests (Mantel r) and the rate of distance decay as the slope of an exponential fit using generalized linear models. We used null models to test whether functional similarity decays faster or slower than expected given the taxonomic decay along the spatial and environmental distance. We also unveiled the factors driving the rate of decay across the datasets, including latitude, spatial extent, realm and organismal features. Results: Taxonomic distance decay was stronger than functional distance decay along both spatial and environmental distance. Functional distance decay was random given the taxonomic distance decay. The rate of taxonomic and functional spatial distance decay was fastest in the datasets from mid-latitudes. Overall, datasets covering larger spatial extents showed a lower rate of decay along spatial distance but a higher rate of decay along environmental distance. Marine ecosystems had the slowest rate of decay along environmental distances. Main conclusions: In general, taxonomic distance decay is a useful tool for biogeographical research because it reflects dispersal-related factors in addition to species responses to climatic and environmental variables. Moreover, functional distance decay might be a cost-effective option for investigating community changes in heterogeneous environments.

4.
J Fish Biol ; 101(1): 179-189, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35538668

ABSTRACT

The red porgy (Pagrus pagrus) is a carnivore bottom dweller sparid, inhabiting flat sandy bottoms, rhodolith and seagrass beds of the Mediterranean Sea, the Western Atlantic (from Florida to Argentina) and the Eastern Atlantic (from Britain to Gabon). Along its native range, the red porgy is highly targeted by commercial and artisanal fisheries. In the past 40 years, the population decline of the species has been widely reported. In many locations, such as the Brazilian coast, stocks have collapsed. The central portion of the Brazilian coast harbours the largest rhodolith beds in the world and the highest levels of nektonic and benthic biodiversity. Along the rhodolith megahabitat, P. pagrus density is disproportionately higher (by 480%) than that of conspicuous benthic fishes inhabiting the same environment. Despite the ecological and economic importance of such an important species along its native range, little is known regarding its habitat use, niche availability and population responses to global warming. Here we present habitat affinities based on data sampled using baited remote stereo-video systems, and modelled niche availability and global warming populational responses. Our findings reveal that the red porgy is a species highly associated with rhodolith beds along the central portion of the Brazilian coast. The presence of a disproportional density and biomass of the red porgy, compared to other marine fish species, indicates that the species plays a key ecological role as a carnivore, mesoconsumer and prey/predator tolerant species, maintaining essential ecological functions in the habitat. In a global warming scenario, the model predicted populational niche shifts poleward and a severe niche erosion at lower latitudes as expected. Conservation initiatives (implementation of Maine Protected Areas, trawling exclusion zones, mining exclusion zones, fisheries management policies) are urgent to secure future stocks of the red porgy and also preserve the fragile rhodolith beds they inhabit.


Subject(s)
Ecosystem , Perciformes , Animals , Biodiversity , Fishes , Mediterranean Sea
5.
J Environ Manage ; 301: 113889, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34610560

ABSTRACT

With the rapid global increase in the number and extent of marine protected areas (MPAs), there is a need for methods that enable an assessment of their actual contribution to biodiversity conservation. In Brazil, where MPAs have been designated to replenish biodiversity, there is a lack of regional-scale analysis of MPA impacts and the factors related to positive ecological change. This study aims to quantify the magnitude of the ecological effects of Brazilian MPAs and test whether some study and MPA characteristics (e.g., taxonomic group studied, exploitation level of species, MPA area, protection time, management effectiveness, level of connectedness, etc.) were underlying factors associated with their performance. We conducted a structured search in a database of scientific articles, selecting comparative studies of direct biodiversity metrics inside and outside MPAs offering different protection levels (i.e., fully- or partially-protected MPAs) or within MPAs with distinct zones. We then carried out a meta-analysis based on 424 observations found in 18 articles. Averaged across all studies, we found that MPAs had a 17% increase in the abundance of species, length of individuals, and community diversity. When compared to open-access areas, fully-protected MPAs increased biodiversity by 45%. However, MPAs offering partial protection had variable effects, ranging from significant positive to significant negative effects. MPA effects depended on the taxonomic group and exploitation level of species, with the strongest positive effects seen on exploited fish species and benthic invertebrates. Partially-protected MPAs that reported strong positive effects required long time of protection (>15years) and high level of connectivity. Conversely, fully-protected MPAs (i.e., no-take ones) could be effective even when small, under intense fishing pressure in their surroundings, and regardless of their level of connectivity. We used the Brazilian MPAs as a case study, but these results can contribute to a more comprehensive assessment of the association between ecological impacts of MPAs and drivers of conservation success, and offer key information to consolidate MPA networks that sustain biodiversity.


Subject(s)
Conservation of Natural Resources , Fisheries , Animals , Atlantic Ocean , Biodiversity , Brazil
6.
J Fish Biol ; 96(2): 539-542, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31823370

ABSTRACT

Here we present records of sharks obtained using baited remote underwater stereo-video systems (stereo-BRUVS) at two Brazilian oceanic islands. Fourteen of the 60 deployments recorded 19 sharks in Trindade Island. In Saint Peter and Saint Paul Archipelago (SPSPA), two pelagic and two demersal deployments recorded two and one shark, respectively, including the locally extinct Galapagos shark Carcharhinus galapagensis. Stereo-BRUVS should be considered as adjuncts to other non-invasive methods to monitor shark populations.


Subject(s)
Sharks/physiology , Animals , Atlantic Ocean , Brazil , Conservation of Natural Resources , Extinction, Biological , Islands , Population Density , Species Specificity , Telemetry
7.
J Fish Biol ; 96(1): 74-82, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31648362

ABSTRACT

We investigated the feeding rates, agonistic behaviour and diet of two blenny species, Entomacrodus vomerinus and Ophioblennius trinitatis, by direct observation and gut content analysis. Both species coexist in small and shallow tide pools in the St Peter and St Paul's Archipelago, equatorial North Atlantic Ocean. The feeding rate of O. trinitatis was c. 55% higher than E. vomerinus. On the other hand, agonistic rate of O. trinitatis was negatively related to body size, whereas in E. vomerinus was positively related. Both species showed a high diet overlap, in which detritus was the most important food item (86% in O. trinitatis and 80% in E. vomerinus). Feeding activity was more intense during the morning for O. trinitatis but afternoon for E. vomerinus. These behavioural observations support the importance of temporal feeding partitioning as the main strategy allowing species co-existence in tide pools.


Subject(s)
Agonistic Behavior , Feeding Behavior/physiology , Fishes/physiology , Animals , Atlantic Ocean , Body Size , Diet , Islands
8.
J Fish Biol ; 97(4): 1143-1153, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32743800

ABSTRACT

Saint Peter and Saint Paul's Archipelago (SPSPA), one of the smallest and most isolated island groups in the world, is situated on the Mid-Atlantic Ridge, between Brazil and the African continent. SPSPA has low species richness and high endemism; nonetheless, the diversity of fishes from deep habitats (>30 m depth) had not been previously studied in detail. Several expeditions conducted between 2009 and 2018 explored the shallow and deep reefs of SPSPA using scuba, closed-circuit rebreathers, manned submersibles, baited remote underwater stereo-videos (stereo-BRUV) and fishing between 0 and 1050 m depth. These expeditions yielded 41 new records of fishes for SPSPA: 9 in open waters, 9 in shallow waters (0-30 m), 8 in mesophotic ecosystems (30-150 m) and 15 in deeper reefs (>150 m). Combined with literature records of adult pelagic, shallow and deep-reef species, as well as larvae, the database of the fish biodiversity for SPSPA currently comprises 225 species (169 recorded as adult fishes and 79 as larvae, with 23 species found in both stages). Most of them (112) are pelagic, 86 are reef-associated species and 27 are deep-water specialists. Species accumulation curves show that the number of fish species has not yet reached an asymptote. Whereas the number of species recorded in SPSPA is similar to that in other oceanic islands in the Atlantic Ocean, the proportion of shorefishes is relatively lower, and the endemism level is the third highest in the Atlantic. Twenty-nine species are listed as threatened with extinction. Observations confirm the paucity of top predators on shallow rocky reefs of the island, despite the presence of several pelagic shark species around SPSPA. Because all of the endemic species are reef associated, it is argued that the new marine-protected areas created by the Brazilian government do not ensure the protection and recovery of SPSPA's biodiversity because they allow exploitation of the most vulnerable species around the archipelago itself. This study suggests a ban on reef fish exploitation inside an area delimited by the 1000 m isobath around the islands (where all known endemics are concentrated) as the main conservation strategy to be included in the SPSPA management plan being prepared by the Brazilian government.


Subject(s)
Biodiversity , Databases, Factual , Fishes/classification , Animals , Atlantic Ocean , Brazil , Coral Reefs , Ecosystem , Islands , Sharks
9.
J Environ Manage ; 256: 109949, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31818747

ABSTRACT

Recreational diving is an expanding branch of ecotourism that when poorly managed, may cause considerable impacts to benthic organisms. Such impacts become a matter of concern in popular diving destinations. A systematic literature review was used to verify the characteristics of divers who cause damage to reefs, the effects on benthic organisms, and the range of management interventions available. We describe the knowledge gaps, addressed challenges and propose solutions hoping to reach successful management of diving tourism industry. We identified three main challenges on recreational diving management frameworks and discussed actions to overcome such challenges. The challenges are related to (1) the lack of baseline data and long-term monitoring; (2) integration of scientific research and management; and (3) adaptive management strategies and stakeholder involvement.


Subject(s)
Anthozoa , Conservation of Natural Resources , Diving , Animals , Data Collection , Industry
10.
J Fish Biol ; 95(3): 812-819, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31198985

ABSTRACT

This study evaluated the functional role of the highly generalist omnivore Melichthys niger in the remote St. Peter and St Paul's Archipelago (SPSPA), Brazil, where grazing herbivorous fishes are very scarce. We analysed patterns of distribution from zero to 30 m deep during three time intervals during the day and sampled different aspects of their feeding behaviour, including diel feeding rate, feeding substrate and diet. The density of M. niger increased with depth (26-30 m) and decreased by the end of the day. Although M. niger did not present a typical herbivore diel feeding pattern, they targeted the epilithic algal matrix as their primary feeding substrate, ingesting predominantly algae and detritus. The characteristic Caulerpa racemosa var. peltata from SPSPA was ingested only as detached fronds. We suggest that in the isolated SPSPA, the single species M. niger may perform a unique role as a link between benthic primary production and higher levels. Further studies on the trophic ecology of omnivorous species are necessary to better understand their roles in a reef system, especially in impoverished areas where they are likely to play a crucial role.


Subject(s)
Feeding Behavior , Fishes/physiology , Herbivory , Animals , Atlantic Ocean , Brazil , Diet , Ecology , Islands
11.
Mar Environ Res ; 199: 106611, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38936260

ABSTRACT

Reef fish communities are shaped by historical and ecological factors, including abiotic and biotic mechanisms at different spatial scales, determining species composition, abundance and biomass. The oceanic islands in the Mid-Atlantic Ridge (St. Peter and St. Paul's Archipelago - SPSPA, Ascension, and St. Helena), exhibiting differences in community structure along a 14-degree latitudinal and a 10 °C thermal gradient. We investigate the influence of sea surface temperature, area, age, isolation and phosphate on reef fish community structures. Reef fish trophic structure varies significantly across the islands, with planktivores and herbivore-detritivores showing the highest abundances in SPSPA and Ascension, while less abundant in St. Helena, aligning with the thermal gradient. Variations in reef fish community structures were predominantly influenced by thermal regimes, corroborating the expansion of species' thermal niche breadth at higher latitudes and lower temperatures. This study highlights that in addition to biogeographic factors, temperature is pivotal on shaping oceanic island reef fish community structure.

12.
Mar Biol ; 170(7): 83, 2023.
Article in English | MEDLINE | ID: mdl-37251697

ABSTRACT

Sea turtles spend most of their life cycle in foraging grounds. Research in developmental habitats is crucial to understanding individual dynamics and to support conservation strategies. One approach to gather information in foraging grounds is the use of cost-effective and non-invasive techniques that allow public participation. The present study aimed to use photographic-identification (photo-ID) to investigate the spatio-temporal distribution of Chelonia mydas and Eretmochelys imbricata. Furthermore, we describe fibropapillomatosis occurrence. This work was carried out at subtropical rocky reefs of the Brazilian coast in Arraial do Cabo (22°57'S, 42°01'W), within a sustainable conservation unit. A total of 641 images were obtained through social media screening (n = 447), citizen science (n = 168), or intentional capture (n = 26) dated between 2006 and 2021. Additionally, 19 diving forms (between 2019 and 2021) were received from citizen scientists. All diving forms presented at least one turtle. Photo-ID identified 174 individuals of C. mydas, with 45 being resighted, while E. imbricata had 32 individuals, with 7 individuals resighted. The median interval between the first and last individual sighting was 1.7 years for C. mydas and 2.4 years for E. imbricata. Fibropapillomatosis was only observed in C. mydas, with a prevalence of 13.99% (20 of 143 individuals) and regression in 2 individuals (10.00%). Our results indicated that Arraial do Cabo is an important development area with individuals residing for at least 6 years. This study demonstrated that social media, along with photo-ID, can be useful to provide sea turtle estimates in a foraging ground using a non-invasive, low-cost method. Supplementary Information: The online version contains supplementary material available at 10.1007/s00227-023-04226-z.

13.
Sci Rep ; 13(1): 13469, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37596337

ABSTRACT

In 2020, multiple lionfish (Pterois spp.) records along the equatorial Southwestern (SW) Atlantic revealed a new expansion of these potentially damaging invasive populations, which could impact over 3500 km of Brazilian coastline over the next few years, as well as unique ecosystems and marine protected areas in its path. To assess the taxonomic status, invasion route, and correlation with other centres of distribution, we investigated the genetic diversity patterns of lionfish caught in 2022 at the Amazonia, Northeastern Brazil, and Fernando de Noronha and Rocas Atoll ecoregions, using two molecular markers, the mitochondrial COI and the nuclear S7 RP1. The data indicate that all studied lionfish belong to what is generally accepted as P. volitans, and share the same genetic signature as lionfish present in the Caribbean Sea. The shared haplotypes and alleles indicate that the SW Atlantic invasion derives from an active movement of adult individuals from the Caribbean Sea into the Brazilian coast. The Amazon mesophotic reefs likely served as a stepping-stone to overcome the biogeographical barrier represented by the Amazon-Orinoco River plume. New alleles found for S7 RP1 suggest the onset of local genetic diversification, heightening the environmental risks as this bioinvasion heads towards other South Atlantic ecoregions.


Subject(s)
Ecosystem , Genetic Variation , Humans , Adult , Alleles , Atlantic Ocean , Brazil
14.
Sci Rep ; 12(1): 17164, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36229468

ABSTRACT

Marginal reefs sustain coral assemblages under conditions considered suboptimal for most corals, resulting in low coral abundance. These reefs are inhabited by numerous fishes with a generally unknown degree of association with corals that might lead to the assumption that corals play minor roles in determining fish occurrence, when corals could be actually sustaining diverse and resilient assemblages. Using site-occupancy models fitted to data of 113 reef fish species of different life stages (adults and juveniles) from 36 reefs distributed across the Southwestern Atlantic (0.87-27.6°S) we first assessed fish assemblage's response to coral and turf algal cover, and identified coral-associated fish. Then, we simulated the loss of coral-associated fishes and contrasted it with random losses, providing inferences on the resilience of fish assemblage's functional trait space to species loss. The entire fish assemblage responded more positively to coral than to turf algae, with 42 (37%) species being identified as coral-associated fish. The simulated loss of coral-associated fish reduced up to 5% the functional trait space and was not different from the random loss. These results reveal that marginal reefs of Southwestern Atlantic reefs host resilient fish assemblages that might preserve fundamental ecological functions and ecosystem services even with coral declines.


Subject(s)
Anthozoa , Animals , Anthozoa/physiology , Coral Reefs , Ecosystem , Fishes/physiology
15.
Nat Ecol Evol ; 6(6): 701-708, 2022 06.
Article in English | MEDLINE | ID: mdl-35379939

ABSTRACT

Human impact increasingly alters global ecosystems, often reducing biodiversity and disrupting the provision of essential ecosystem services to humanity. Therefore, preserving ecosystem functioning is a critical challenge of the twenty-first century. Coral reefs are declining worldwide due to the pervasive effects of climate change and intensive fishing, and although research on coral reef ecosystem functioning has gained momentum, most studies rely on simplified proxies, such as fish biomass. This lack of quantitative assessments of multiple process-based ecosystem functions hinders local and regional conservation efforts. Here we combine global coral reef fish community surveys and bioenergetic models to quantify five key ecosystem functions mediated by coral reef fishes. We show that functions exhibit critical trade-offs driven by varying community structures, such that no community can maximize all functions. Furthermore, functions are locally dominated by few species, but the identity of dominant species substantially varies at the global scale. In fact, half of the 1,110 species in our dataset are functionally dominant in at least one location. Our results reinforce the need for a nuanced, locally tailored approach to coral reef conservation that considers multiple ecological functions beyond the effect of standing stock biomass.


Subject(s)
Coral Reefs , Ecosystem , Animals , Biodiversity , Biomass , Climate Change
16.
PeerJ ; 10: e14313, 2022.
Article in English | MEDLINE | ID: mdl-36389402

ABSTRACT

Biodiversity assessment is a mandatory task for sustainable and adaptive management for the next decade, and long-term ecological monitoring programs are a cornerstone for understanding changes in ecosystems. The Brazilian Long-Term Ecological Research Program (PELD) is an integrated effort model supported by public funds that finance ecological studies at 34 locations. By interviewing and compiling data from project coordinators, we assessed monitoring efforts, targeting biological groups and scientific production from nine PELD projects encompassing coastal lagoons to mesophotic reefs and oceanic islands. Reef environments and fish groups were the most often studied within the long-term projects. PELD projects covered priority areas for conservation but missed sensitive areas close to large cities, as well as underrepresenting ecosystems on the North and Northeast Brazilian coast. Long-term monitoring projects in marine and coastal environments in Brazil are recent (<5 years), not yet integrated as a network, but scientifically productive with considerable relevance for academic and human resources training. Scientific production increased exponentially with project age, despite interruption and shortage of funding during their history. From our diagnosis, we recommend some actions to fill in observed gaps, such as: enhancing projects' collaboration and integration; focusing on priority regions for new projects; broadening the scope of monitored variables; and, maintenance of funding for existing projects.


Subject(s)
Biodiversity , Ecosystem , Animals , Humans , Brazil , Oceans and Seas , Fishes
17.
Mar Environ Res ; 166: 105261, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33493683

ABSTRACT

Most methods for assessing reef fish assemblages at night require artificial light, but the use of different colors of light may influence the results. We used data from 135 underwater visual censuses (UVCs) performed with different colors of light (red, blue and white) to evaluate the structure of fish assemblages on subtropical rocky reefs along three depth intervals. We did not detect any effect of the color of light on total density or fish species richness per transect, nor on the structure of the entire assemblage. However, the density of some of the most abundant species varied according to the color used. Red light showed the highest values of frequency of occurrence for most species, while the white light resulted in decreased abundance of some fish species. Our results emphasize the importance of choosing the color of light depending on the type of studies to be conducted. This will depend on the objectives of the research (e.g. inventory, behavior or community dynamics) and the target fish fauna (e.g. mobile or sedentary).


Subject(s)
Censuses , Coral Reefs , Animals , Biodiversity , Color , Ecosystem , Fishes
18.
PLoS One ; 16(6): e0252391, 2021.
Article in English | MEDLINE | ID: mdl-34061860

ABSTRACT

An understanding of the effects of fishing on marine ecosystems relies on information about the conserved state of these environments. Non-conventional approaches such as the use of historical data and local ecological knowledge can provide information and help adjust our references of changes in the environment. Also, the combination of different types of data can indicate a fisheries trend that would be undetectable when evaluated separately. Here we investigated changes in fisher's perceptions regarding overexploited and new target species in artisanal fisheries in a secular fishing village of the subtropical, southeastern Brazilian coast. We identified temporal changes in landings and in the mean trophic level (MTL) of high trophic level species (≥ 3.5 and >4) over 16 years. Fishers' knowledge revealed shifts in perception associated with years of fishing practice. More experienced fishers recognized a greater number of overexploited and new target species than fishers in the beginning of their careers. Landing data has revealed declining trends of 72% for five mesopredators species. Due to the overfishing of mesopredators, there was a shift in target species, towards fish that were previously discarded. Temporal changes in landings and in the MTL metric are concordant with previous reports on the overexploitation of species caught by local fishers. Our work reveals that multiple sources of information can be combined to establish historical baselines and improve the detection of change in marine ecosystems.


Subject(s)
Fisheries/statistics & numerical data , Brazil , Food Chain
20.
PLoS One ; 13(6): e0198452, 2018.
Article in English | MEDLINE | ID: mdl-29883496

ABSTRACT

As marine ecosystems are influenced by global and regional processes, standardized information on community structure has become crucial for assessing broad-scale responses to natural and anthropogenic disturbances. Extensive biogeographic provinces, such as the Brazilian Province in the southwest Atlantic, present numerous theoretical and methodological challenges for understanding community patterns on a macroecological scale. In particular, the Brazilian Province is composed of a complex system of heterogeneous reefs and a few offshore islands, with contrasting histories and geophysical-chemical environments. Despite the large extent of the Brazilian Province (almost 8,000 kilometers), most studies of shallow benthic communities are qualitative surveys and/or have been geographically restricted. We quantified community structure of shallow reef habitats from 0° to 27°S latitude using a standard photographic quadrat technique. Percent cover data indicated that benthic communities of Brazilian reefs were dominated by algal turfs and frondose macroalgae, with low percent cover of reef-building corals. Community composition differed significantly among localities, mostly because of their macroalgal abundance, despite reef type or geographic region, with no evident latitudinal pattern. Benthic diversity was lower in the tropics, contrary to the general latitudinal diversity gradient pattern. Richness peaked at mid-latitudes, between 20°S to 23°S, where it was ~3.5-fold higher than localities with the lowest richness. This study provides the first large-scale description of benthic communities along the southwestern Atlantic, providing a baseline for macroecological comparisons and evaluation of future impacts. Moreover, the new understanding of richness distribution along Brazilian reefs will contribute to conservation planning efforts, such as management strategies and the spatial prioritization for the creation of new marine protected areas.


Subject(s)
Coral Reefs , Seaweed/physiology , Atlantic Ocean , Biodiversity , Brazil
SELECTION OF CITATIONS
SEARCH DETAIL