ABSTRACT
BACKGROUND: A number of biomarkers have been studied for the diagnosis of sepsis in paediatrics, but no gold standard has been identified. Procalcitonin (PCT) was demonstrated to be an accurate biomarker for the diagnosis of sepsis in adults and showed to be promising in paediatrics. Our study reviewed the diagnostic accuracy of PCT as an early biomarker of sepsis in neonates and children with suspected sepsis. METHODS: A comprehensive literature search was carried out in Medline/Pubmed, Embase, ISI Web of Science, CINAHL and Cochrane Library, for studies assessing PCT accuracy in the diagnosis of sepsis in children and neonates with suspected sepsis. Studies in which the presence of infection had been confirmed microbiologically or classified as "probable" by chart review were included. Studies comparing patients to healthy subjects were excluded. We analysed data on neonates and children separately. Our primary outcome was the diagnostic accuracy of PCT at the cut-off of 2-2.5 ng/ml, while as secondary outcomes we analysed PCT cut-offs <2 ng/ml and >2.5 ng/ml. Pooled sensitivities and specificities were calculated by a bivariate meta-analysis and heterogeneity was graphically evaluated. RESULTS: We included 17 studies, with a total of 1408 patients (1086 neonates and 322 children). Studies on neonates with early onset sepsis (EOS) and late onset sepsis (LOS) were grouped together. In the neonatal group, we calculated a sensitivity of 0.85, confidence interval (CI) (0.76; 0.90) and specificity of 0.54, CI (0.38; 0.70) at the PCT cut-off of 2.0-2.5 ng/ml. In the paediatric group it was not possible to undertake a pooled analysis at the PCT cut-off of 2.0-2.5 ng/ml, due to the paucity of the studies. CONCLUSIONS: PCT shows a moderate accuracy for the diagnosis of sepsis in neonates with suspected sepsis at the cut-off of 2.0-2.5 ng/ml. More studies with high methodological quality are warranted, particularly in neonates, studies considering EOS and LOS separately are needed to improve specificity. TRIAL REGISTRATION: PROSPERO Identifier: CRD42016033809 . Registered 30 Jan 2016.
Subject(s)
Calcitonin/blood , Sepsis/diagnosis , Biomarkers/blood , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Prospective Studies , Reproducibility of Results , Sensitivity and Specificity , Sepsis/microbiologyABSTRACT
This study provides a contribution to the research field of 3D-printed earthen buildings, focusing, for the first time, on the load-bearing capacity of these structures. The study involves the entire production and testing process of the earthen elements, from the design, to the preparation of the mixture and the 3D printing, up to the uniaxial compression test on a wall segment. The results indicate that 3D-printed earthen elements have a compressive strength of 2.32 MPa, comparable to that of rammed earth structures. The experimental data also made it possible to draw conclusions on the action of the infill, which seems to have the function of stopping the propagation of cracks. This has a positive effect on the overall behavior of 3D-printed earthen elements, since it avoids the onset of dilative behavior in the final stages of the load test and maintains ultimate load values higher than 50% of the maximum load.
ABSTRACT
This paper is part of a study on earthen mixtures for the 3D printing of buildings. To meet the ever increasing environmental needs, the focus of the paper is on a particular type of biocomposite for the stabilization of earthen mixtures-the rice-husk-lime biocomposite-and on how to enhance its effect on the long-term mechanical properties of the hardened product. Assuming that the shredding of the vegetable fiber is precisely one of the possible ways to improve the mechanical properties, we compared the results of uniaxial compression tests performed on cubic specimens, made with both shredded and unaltered vegetable fiber, for three curing periods. The results show that the hardened earthen mixture is not a brittle material, in the strict sense, because it exhibits some peculiar behaviors that are anomalous for a brittle material. However, being a "designable" material, its properties can be varied with a certain flexibility in order to become as close as possible to the desired ones. One of the peculiar properties of the hardened earthen mixture deserves further investigation, rather than corrections. This is the vulcanization that occurs (in a completely natural way) over the long term, thanks to the mineralization of the vegetable fiber by the carbonation of the lime.
ABSTRACT
(1) Background: Children with chronic medical conditions may be at increased risk for severe complications related to vaccine-preventable infections. Therefore, additional booster doses or supplementary vaccines are recommended, over and above the routine immunization schedule for healthy children. The aim of this study was to investigate attitude, knowledge, and practices toward additional vaccinations for children affected by chronic conditions among pediatricians and parents. (2) Methods: This study is based on two surveys: (i) a national cross-sectional survey, targeting pediatrician working in hospitals or in the primary health sector; (ii) a local cross-sectional survey, targeting parents of children with a previous diagnosis of chronic disease. (3) Results: Despite the fact that most of the health professionals and parents interviewed had an overall positive vaccine attitude, most pediatricians did not show an adequate knowledge of additional vaccinations for children affected by chronic diseases. Moreover, the coverage of additional recommended vaccinations in chronic pediatric patients was low. (4) Conclusions: This research highlighted important existing challenges hampering optimal vaccination coverage among pediatric chronic patients, including knowledge gaps on tailored vaccination schedules among pediatricians and organizational issues. The ongoing review of the Italian national immunization plan is a not-to-be-missed-opportunity to include evidence-based, detailed, and comprehensive recommendations on vaccinations for children affected by chronic conditions.
ABSTRACT
This paper presents a new numerical method for multiscale modeling of composite materials. The new numerical model, called DECM, consists of a DEM (Discrete Element Method) approach of the Cell Method (CM) and combines the main features of both the DEM and the CM. In particular, it offers the same degree of detail as the CM, on the microscale, and manages the discrete elements individually such as the DEM-allowing finite displacements and rotations-on the macroscale. Moreover, the DECM is able to activate crack propagation until complete detachment and automatically recognizes new contacts. Unlike other DEM approaches for modeling failure mechanisms in continuous media, the DECM does not require prior knowledge of the failure position. Furthermore, the DECM solves the problems in the space domain directly. Therefore, it does not require any dynamic relaxation techniques to obtain the static solution. For the sake of example, the paper shows the results offered by the DECM for axial and shear loading of a composite two-dimensional domain with periodic round inclusions. The paper also offers some insights into how the inclusions modify the stress field in composite continua.
ABSTRACT
The present paper deals with an improvement of the strengthening technique consisting in the combined use of straps-made of stainless steel ribbons-and CFRP (Carbon Fiber Reinforced Polymer) strips, to increase the out-of-plane ultimate load of masonry walls. The straps of both the previous and the new combined technique pass from one face to the opposite face of the masonry wall through some holes made along the thickness, giving rise to a three-dimensional net of loop-shaped straps, closed on themselves. The new technique replaces the stainless steel ribbons with steel wire ropes, which form closed loops around the masonry units and the CFRP strips as in the previous technique. A turnbuckle for each steel wire rope allows the closure of the loops and provides the desired pre-tension to the straps. The mechanical coupling-given by the frictional forces-between the straps and the CFRP strips on the two faces of the masonry wall gives rise to an I-beam behavior that forces the CFRP strips to resist the load as if they were the two flanges of the same I-beam. Even the previous combined technique exploits the ideal I-beam mechanism, but the greater stiffness of the steel wire ropes compared to the stiffness of the steel ribbons makes the constraint between the facing CFRP strips stiffer. This gives the reinforced structural element a greater stiffness and delamination load. In particular, the experimental results show that the maximum load achievable with the second combined technique is much greater than the maximum load provided by the CFRP strips. Even the ultimate displacement turns out to be increased, allowing us to state that the second combined technique improves both strength and ductility. Since the CFRP strips of the combined technique run along the vertical direction of the wall, the ideal I-beam mechanism is particularly useful to counteract the hammering action provided by the floors on the perimeter walls, during an earthquake. Lastly, when the building suffers heavy structural damage due to a strong earthquake, the box-type behavior offered by the three-dimensional net of straps prevents the building from collapsing, acting as a device for safeguarding life.
ABSTRACT
The purpose of this study is to improve the performance of walls under out-of-plane loads especially when subjected to the hammering action of the floors. The idea behind the paper is to provide the masonry walls with a device that behaves like a buttress, without having to build a traditional buttress. The solution presented in this paper consists of a mechanical coupling between the three-dimensional net of steel ribbons of the CAM (Active Confinement of Masonry) system and the CFRP (Carbon Fiber Reinforced Polymer) strips. Since the steel ribbons of the CAM system have a pre-tension, the mechanical coupling allows the steel ribbons to establish a semi-rigid transverse link between the CFRP strips bonded on the two opposite sides of a wall. Therefore, two vertical CFRP strips tied by the steel ribbons behave like the flanges of an I-beam and the flexural strength of the ideal I-beam counteracts the out-of-plane displacements of the wall. The experimental results showed that the combined technique inherits the strong points of both constituent techniques. In fact, the delamination load is comparable to that of the specimens reinforced with the CFRP strips and the overall behavior is as ductile as for the specimens reinforced with the CAM system. They also inspired a more performing combined technique.
ABSTRACT
The present paper deals with the retrofitting of unreinforced masonry (URM) buildings, subjected to in-plane shear and out of-plane loading when struck by an earthquake. After an introductive comparison between some of the latest punctual and continuous active retrofitting methods, the authors focused on the two most effective active continuous techniques, the CAM (Active Confinement of Masonry) system and the Φ system, which also improve the box-type behavior of buildings. These two retrofitting systems allow increasing both the static and dynamic load-bearing capacity of masonry buildings. Nevertheless, information on how they actually modify the stress field in static conditions is lacking and sometimes questionable in the literature. Therefore, the authors performed a static analysis in the plane of Mohr/Coulomb, with the dual intent to clarify which of the two is preferable under static conditions and whether the models currently used to design the retrofitting systems are fully adequate.
ABSTRACT
Camurati-Engelmann disease (CED) is an ultrarare autosomal dominant bone dysplasia. Cortical thickening of the diaphyses of the long bones with narrowing of the medullary cavity are associated with bone pain, waddling gait, muscular weakness, easy fatigability, and a marfanoid body habitus. There is no specific treatment for CED. Nonsteroidal anti-inflammatory drugs or glucocorticoids are ineffective in improving bone lesions. A family with a mild to severe form of CED is described. Two patients received long-term bisphosphonate treatment: the 19-year-old female proband was treated with zoledronic acid for 2.2 years; the 4-year-old male proband was treated with neridronic acid for 16 months and with zoledronic acid for an additional 18 months. In both probands, zoledronic acid treatment significantly improved the clinical symptoms, bone lesions, ambulation, and body habitus. Before treatment, both probands showed a marked increase in serum levels of osteocalcin, procollagen type I N-terminal propeptide, and cross-linked carboxyterminal telopeptide of type I collagen, reflecting an increased bone turnover. Bone marker levels returned to their normal values during treatment. Zoledronic acid treatment may be an important therapeutic option in patients with severe CED. Biochemical markers of bone turnover could be considered as surrogate indexes of CED activity.
ABSTRACT
BACKGROUND: Differential diagnosis between sepsis and non-infectious inflammatory disorders demands improved biomarkers. Soluble Triggering Receptor Expression on Myeloid cells (sTREM-1) is an activating receptor whose role has been studied throughout the last decade. We performed a systematic review to evaluate the accuracy of plasma sTREM-1 levels in the diagnosis of sepsis in children with Systemic Inflammatory Response Syndrome (SIRS). METHODS: A literature search of PubMed, Cochrane Central Register of Controlled Trials, Cumulative Index to Nursing and Allied Health Literature (CINAHL) and ISI Web of Knowledge databases was performed using specific search terms. Studies were included if they assessed the diagnostic accuracy of plasma sTREM-1 for sepsis in paediatric patients with SIRS. Data on sensitivity, specificity, positive predictive value, negative predictive value, area under receiver operating characteristic curve were extracted. The methodological quality of each study was assessed using a checklist based on the Quality Assessment Tool for Diagnostic Accuracy Studies. RESULTS: Nine studies comprising 961 patients were included, four of which were in newborns, three in children and two in children with febrile neutropenia. Some data from single studies support a role of sTREM-1 as a diagnostic tool in pediatric sepsis, but cannot be considered conclusive, because a quantitative synthesis was not possible, due to heterogeneity in studies design. CONCLUSIONS: This systematic review suggests that available data are insufficient to support a role for sTREM in the diagnosis and follow-up of paediatric sepsis.