Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Phys Rev Lett ; 127(24): 243602, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34951804

ABSTRACT

We report the experimental observation of a superradiant emission emanating from an elongated dense ensemble of laser cooled two-level atoms, with a radial extent smaller than the transition wavelength. In the presence of a strong driving laser, we observe that the system is superradiant along its symmmetry axis. This occurs even though the driving laser is orthogonal to the superradiance direction. This superradiance modifies the spontaneous emission, and, resultantly, the Rabi oscillations. We also investigate Dicke superradiance in the emission of an almost fully inverted system as a function of the atom number. The experimental results are in qualitative agreement with ab-initio, beyond-mean-field calculations.

2.
Phys Rev Lett ; 110(16): 163202, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23679599

ABSTRACT

We study the lifetime of a Bose gas at and around unitarity using a Feshbach resonance in lithium 7. At unitarity, we measure the temperature dependence of the three-body decay coefficient L(3). Our data follow a L(3)=λ(3)/T(2) law with λ(3)=2.5(3)(stat)(6)(syst)×10(-20) (µK)(2) cm(6) s(-1) and are in good agreement with our analytical result based on zero-range theory. Varying the scattering length a at fixed temperature, we investigate the crossover between the finite-temperature unitary region and the previously studied regime where |a| is smaller than the thermal wavelength. We find that L(3) is continuous across the resonance, and over the whole a<0 range our data quantitatively agree with our calculation.

3.
Phys Rev X ; 5(4)2015.
Article in English | MEDLINE | ID: mdl-29876143

ABSTRACT

We show that for ultracold magnetic lanthanide atoms chaotic scattering emerges due to a combination of anisotropic interaction potentials and Zeeman coupling under an external magnetic field. This scattering is studied in a collaborative experimental and theoretical effort for both dysprosium and erbium. We present extensive atom-loss measurements of their dense magnetic Feshbach-resonance spectra, analyze their statistical properties, and compare to predictions from a random-matrix-theory-inspired model. Furthermore, theoretical coupled-channels simulations of the anisotropic molecular Hamiltonian at zero magnetic field show that weakly bound, near threshold diatomic levels form overlapping, uncoupled chaotic series that when combined are randomly distributed. The Zeeman interaction shifts and couples these levels, leading to a Feshbach spectrum of zero-energy bound states with nearest-neighbor spacings that changes from randomly to chaotically distributed for increasing magnetic field. Finally, we show that the extreme temperature sensitivity of a small, but sizable fraction of the resonances in the Dy and Er atom-loss spectra is due to resonant nonzero partial-wave collisions. Our threshold analysis for these resonances indicates a large collision-energy dependence of the three-body recombination rate.

4.
Science ; 345(6200): 1035-8, 2014 Aug 29.
Article in English | MEDLINE | ID: mdl-25035409

ABSTRACT

Superconductivity and superfluidity of fermionic and bosonic systems are remarkable many-body quantum phenomena. In liquid helium and dilute gases, Bose and Fermi superfluidity has been observed separately, but producing a mixture in which both the fermionic and the bosonic components are superfluid is challenging. Here we report on the observation of such a mixture with dilute gases of two lithium isotopes, lithium-6 and lithium-7. We probe the collective dynamics of this system by exciting center-of-mass oscillations that exhibit extremely low damping below a certain critical velocity. Using high-precision spectroscopy of these modes, we observe coherent energy exchange and measure the coupling between the two superfluids. Our observations can be captured theoretically using a sum-rule approach that we interpret in terms of two coupled oscillators.

SELECTION OF CITATIONS
SEARCH DETAIL