Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
J Transl Med ; 22(1): 82, 2024 01 20.
Article in English | MEDLINE | ID: mdl-38245790

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is a liver disorder characterized by the ac-cumulation of fat in hepatocytes without alcohol consumption. Mitochondrial dysfunction and endoplasmic reticulum (ER) stress play significant roles in NAFLD pathogenesis. The unfolded protein response in mitochondria (UPRmt) is an adaptive mechanism that aims to restore mitochondrial protein homeostasis and mitigate cellular stress. This study aimed to investigate the effects of ( +)-Lipoic acid (ALA) on UPRmt, inflammation, and oxidative stress in an in vitro model of NAFLD using HepG2 cells treated with palmitic acid and oleic acid to induce steatosis. RESULTS: Treatment with palmitic and oleic acids increased UPRmt-related proteins HSP90 and HSP60 (heat shock protein), and decreased CLPP (caseinolytic protease P), indicating ER stress activation. ALA treatment at 1 µM and 5 µM restored UPRmt-related protein levels. PA:OA (palmitic acid:oleic acid)-induced ER stress markers IRE1α (Inositol requiring enzyme-1), CHOP (C/EBP Homologous Protein), BIP (Binding Immunoglobulin Protein), and BAX (Bcl-2-associated X protein) were significantly reduced by ALA treatment. ALA also enhanced ER-mediated protein glycosylation and reduced oxidative stress, as evidenced by decreased GPX1 (Glutathione peroxidase 1), GSTP1 (glutathione S-transferase pi 1), and GSR (glutathione-disulfide reductase) expression and increased GSH (Glutathione) levels, and improved cellular senescence as shown by the markers ß-galactosidase, γH2Ax and Klotho-beta. CONCLUSIONS: In conclusion, ALA ameliorated ER stress, oxidative stress, and inflammation in HepG2 cells treated with palmitic and oleic acids, potentially offering therapeutic benefits for NAFLD providing a possible biochemical mechanism underlying ALA beneficial effects.


Subject(s)
Non-alcoholic Fatty Liver Disease , Thioctic Acid , Humans , Non-alcoholic Fatty Liver Disease/pathology , Thioctic Acid/pharmacology , Thioctic Acid/therapeutic use , Thioctic Acid/metabolism , Endoribonucleases/metabolism , Oleic Acid/pharmacology , Oleic Acid/metabolism , Protein Serine-Threonine Kinases/metabolism , Unfolded Protein Response , Oxidative Stress , Endoplasmic Reticulum Stress , Hepatocytes/pathology , Cellular Senescence , Inflammation/pathology , Palmitic Acids/metabolism , Palmitic Acids/pharmacology , Liver/pathology , Palmitic Acid/pharmacology , Palmitic Acid/metabolism
2.
Aging (Albany NY) ; 16(12): 10203-10215, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38942607

ABSTRACT

Down Syndrome (DS) is a common genetic disorder characterized by an extra copy of chromosome 21, leading to dysregulation of various metabolic pathways. Oxidative stress in DS is associated with neurodevelopmental defects, neuronal dysfunction, and a dementia onset resembling Alzheimer's disease. Additionally, chronic oxidative stress contributes to cardiovascular diseases and certain cancers prevalent in DS individuals. This study investigates the impact of ageing on oxidative stress and liver fibrosis using a DS murine model (Ts2Cje mice). Our results show that DS mice show increased liver oxidative stress and impaired antioxidant defenses, as evidenced by reduced glutathione levels and increased lipid peroxidation. Therefore, DS liver exhibits an altered inflammatory response and mitochondrial fitness as we showed by assaying the expression of HMOX1, CLPP, and the heat shock proteins Hsp90 and Hsp60. DS liver also displays dysregulated lipid metabolism, indicated by altered expression of PPARα, PPARγ, FATP5, and CTP2. Consistently, these changes might contribute to non-alcoholic fatty liver disease development, a condition characterized by liver fat accumulation. Consistently, histological analysis of DS liver reveals increased fibrosis and steatosis, as showed by Col1a1 increased expression, indicative of potential progression to liver cirrhosis. Therefore, our findings suggest an increased risk of liver pathologies in DS individuals, particularly when combined with the higher prevalence of obesity and metabolic dysfunctions in DS patients. These results shed a light on the liver's role in DS-associated pathologies and suggest potential therapeutic strategies targeting oxidative stress and lipid metabolism to prevent or mitigate liver-related complications in DS individuals.


Subject(s)
Aging , Disease Models, Animal , Down Syndrome , Liver Cirrhosis , Oxidative Stress , Animals , Down Syndrome/metabolism , Down Syndrome/pathology , Down Syndrome/genetics , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Aging/metabolism , Mice , Liver/metabolism , Liver/pathology , Lipid Metabolism , Male , Lipid Peroxidation , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology
3.
Metabolites ; 13(7)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37512586

ABSTRACT

Tumor onset and its progression are strictly linked to its metabolic rewiring on the basis of the Warburg effect. In this context, fumarate emerged as a putative oncometabolite mediating cancer progression. Fumarate accumulation is usually driven by fumarate hydratase (FH) loss of function, the enzyme responsible for the reversible conversion of fumarate into malate. Fumarate accumulation acts as a double edge sword: on one hand it takes part in the metabolic rewiring of cancer cells, while on the other it also plays a crucial role in chromatin architecture reorganization. The latter is achieved by competing with a-ketoglutarate-dependent enzymes, eventually altering the cellular methylome profile, which in turn leads to its transcriptome modeling. Furthermore, in recent years, it has emerged that FH has an ability to recruit DNA double strand breaks. The accumulation of fumarate into damaged sites might also determine the DNA repair pathway in charge for the seizure of the lesion, eventually affecting the mutational state of the cells. In this work, we aimed to review the current knowledge on the role of fumarate as an oncometabolite orchestrating the cellular epigenetic landscape and DNA repair machinery.

4.
Epidemiol Psichiatr Soc ; 18(2): 137-46, 2009.
Article in English | MEDLINE | ID: mdl-19526745

ABSTRACT

AIMS: To explore: a) the burden of care, and the professional and social support in relatives of patients with bipolar disorders; b) the psychosocial interventions provided to patients and their families by Italian mental health centres. METHODS: 342 outpatients with a bipolar disorder and their key-relatives were randomly recruited in 26 Italian mental health centres, randomly selected and stratified by geographical area and population density. Family burden was explored in relation to: a) patient's clinical status and disability; b) relatives' social and professional support; c) interventions received by patients and their families; d) geographical area. RESULTS: In the previous two months, global functioning was moderately impaired in 36% of the patients, and severely impaired in 34% of them. Twenty-one percent of patients attended a rehabilitative programme, and 3% of their families received a psychoeducational intervention. Burden was higher when patient's symptoms and disability were more severe, the relatives had poorer psychological support and help in emergencies by the social network, and the family lived in Southern Italy. Differences in family burden in relation to geographical area disappeared when psychosocial interventions were provided. CONCLUSION: This study highlights the need to increase the availability of rehabilitative interventions for patients with bipolar disorders and of psychological support for their families, especially in Southern Italy.


Subject(s)
Bipolar Disorder , Cost of Illness , Family Health , Bipolar Disorder/therapy , Female , Humans , Italy , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL