Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
N Engl J Med ; 382(21): 2005-2011, 2020 05 21.
Article in English | MEDLINE | ID: mdl-32220208

ABSTRACT

BACKGROUND: Long-term care facilities are high-risk settings for severe outcomes from outbreaks of Covid-19, owing to both the advanced age and frequent chronic underlying health conditions of the residents and the movement of health care personnel among facilities in a region. METHODS: After identification on February 28, 2020, of a confirmed case of Covid-19 in a skilled nursing facility in King County, Washington, Public Health-Seattle and King County, aided by the Centers for Disease Control and Prevention, launched a case investigation, contact tracing, quarantine of exposed persons, isolation of confirmed and suspected cases, and on-site enhancement of infection prevention and control. RESULTS: As of March 18, a total of 167 confirmed cases of Covid-19 affecting 101 residents, 50 health care personnel, and 16 visitors were found to be epidemiologically linked to the facility. Most cases among residents included respiratory illness consistent with Covid-19; however, in 7 residents no symptoms were documented. Hospitalization rates for facility residents, visitors, and staff were 54.5%, 50.0%, and 6.0%, respectively. The case fatality rate for residents was 33.7% (34 of 101). As of March 18, a total of 30 long-term care facilities with at least one confirmed case of Covid-19 had been identified in King County. CONCLUSIONS: In the context of rapidly escalating Covid-19 outbreaks, proactive steps by long-term care facilities to identify and exclude potentially infected staff and visitors, actively monitor for potentially infected patients, and implement appropriate infection prevention and control measures are needed to prevent the introduction of Covid-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Disease Transmission, Infectious , Infection Control/methods , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Skilled Nursing Facilities , Adult , Aged , Aged, 80 and over , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Contact Tracing , Coronavirus Infections/diagnosis , Coronavirus Infections/mortality , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Disease Outbreaks , Disease Transmission, Infectious/prevention & control , Female , Health Personnel , Humans , Long-Term Care , Male , Middle Aged , Pneumonia, Viral/mortality , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , SARS-CoV-2 , Washington/epidemiology
2.
MMWR Morb Mortal Wkly Rep ; 69(12): 339-342, 2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32214083

ABSTRACT

On February 28, 2020, a case of coronavirus disease (COVID-19) was identified in a woman resident of a long-term care skilled nursing facility (facility A) in King County, Washington.* Epidemiologic investigation of facility A identified 129 cases of COVID-19 associated with facility A, including 81 of the residents, 34 staff members, and 14 visitors; 23 persons died. Limitations in effective infection control and prevention and staff members working in multiple facilities contributed to intra- and interfacility spread. COVID-19 can spread rapidly in long-term residential care facilities, and persons with chronic underlying medical conditions are at greater risk for COVID-19-associated severe disease and death. Long-term care facilities should take proactive steps to protect the health of residents and preserve the health care workforce by identifying and excluding potentially infected staff members and visitors, ensuring early recognition of potentially infected patients, and implementing appropriate infection control measures.


Subject(s)
Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Disease Outbreaks , Pneumonia, Viral/diagnosis , Pneumonia, Viral/epidemiology , Residential Facilities , Skilled Nursing Facilities , Adult , Aged , Aged, 80 and over , COVID-19 , Chronic Disease , Coronavirus Infections/mortality , Coronavirus Infections/prevention & control , Disease Outbreaks/prevention & control , Fatal Outcome , Female , Humans , Infection Control/standards , Long-Term Care , Male , Middle Aged , Pneumonia, Viral/mortality , Pneumonia, Viral/prevention & control , Risk Factors , Washington/epidemiology , Young Adult
3.
Foods ; 13(13)2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38998561

ABSTRACT

New licuri-based kefir beverages were obtained using water kefir grains as fermentation inoculum (1, 2.5, and 5%) under different fermentation times (24 and 48 h). Metagenomic sequencing of the kefir grains adapted to the aqueous licuri extract revealed Lactobacillus hilgardii and Brettanomyces bruxellensis to be predominant in this inoculum. The excellent adaptation of the kefir grains to the licuri extract raised the possibility of prebiotic action of these almonds. The beverages showed acidity values between 0.33 ± 0.00 and 0.88 ± 0.00 mg lactic acid/100 mL and pH between 3.52 ± 0.01 and 4.29 ± 0.04. The viability of lactic acid bacteria in the fermented beverages was equal to or greater than 108 CFU/mL, while yeasts were between 104 and 105 CFU/mL. There were significant differences (p < 0.05) in the proximate composition of the formulations, especially in the protein (1.37 ± 0.33-2.16 ± 0.84) and carbohydrate (5.86 ± 0.19-11.51 ± 1.26) contents. In addition, all the samples showed good stability in terms of acidity, pH, and viability for LAB and yeasts during 28 days of storage (4 °C). Overall, the beverages showed a dominant yellow-green color, non-Newtonian pseudoplastic behavior, and high mean scores in the sensory evaluation. This study provided evidence of the emerging potential of licuri in the plant-based beverage industry.

4.
PLoS One ; 11(5): e0155041, 2016.
Article in English | MEDLINE | ID: mdl-27158977

ABSTRACT

Yellow fever continues to be an important epidemiological problem in Africa and South America even though the disease can be controlled by vaccination. The vaccine has been produced since 1937 and is based on YFV 17DD chicken embryo infection. However, little is known about the histopathological background of virus infection and replication in this model. Here we show by morphological and molecular methods (brightfield and confocal microscopies, immunofluorescence, nested-PCR and sequencing) the kinetics of YFV 17DD infection in chicken embryos with 9 days of development, encompassing 24 to 96 hours post infection. Our principal findings indicate that the main cells involved in virus production are myoblasts with a mesenchymal shape, which also are the first cells to express virus proteins in Gallus gallus embryos at 48 hours after infection. At 72 hours post infection, we observed an increase of infected cells in embryos. Many sites are thus affected in the infection sequence, especially the skeletal muscle. We were also able to confirm an increase of nervous system infection at 96 hours post infection. Our data contribute to the comprehension of the pathogenesis of YF 17DD virus infection in Gallus gallus embryos.


Subject(s)
Yellow Fever/pathology , Animals , Chick Embryo , Kinetics , Microscopy, Confocal
5.
PLoS Negl Trop Dis ; 9(9): e0004064, 2015.
Article in English | MEDLINE | ID: mdl-26371874

ABSTRACT

The yellow fever (YF) 17D vaccine is one of the most effective human vaccines ever created. The YF vaccine has been produced since 1937 in embryonated chicken eggs inoculated with the YF 17D virus. Yet, little information is available about the infection mechanism of YF 17DD virus in this biological model. To better understand this mechanism, we infected embryos of Gallus gallus domesticus and analyzed their histopathology after 72 hours of YF infection. Some embryos showed few apoptotic bodies in infected tissues, suggesting mild focal infection processes. Confocal and super-resolution microscopic analysis allowed us to identify as targets of viral infection: skeletal muscle cells, cardiomyocytes, nervous system cells, renal tubular epithelium, lung parenchyma, and fibroblasts associated with connective tissue in the perichondrium and dermis. The virus replication was heaviest in muscle tissues. In all of these specimens, RT-PCR methods confirmed the presence of replicative intermediate and genomic YF RNA. This clearer characterization of cell targets in chicken embryos paves the way for future development of a new YF vaccine based on a new cell culture system.


Subject(s)
Yellow Fever Vaccine , Yellow fever virus/growth & development , Animal Structures/virology , Animals , Chick Embryo , Histocytochemistry , Vaccines, Attenuated , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL