Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.539
Filter
Add more filters

Publication year range
1.
Cell ; 186(18): 3758-3775, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37657418

ABSTRACT

With the rapid expansion of aging biology research, the identification and evaluation of longevity interventions in humans have become key goals of this field. Biomarkers of aging are critically important tools in achieving these objectives over realistic time frames. However, the current lack of standards and consensus on the properties of a reliable aging biomarker hinders their further development and validation for clinical applications. Here, we advance a framework for the terminology and characterization of biomarkers of aging, including classification and potential clinical use cases. We discuss validation steps and highlight ongoing challenges as potential areas in need of future research. This framework sets the stage for the development of valid biomarkers of aging and their ultimate utilization in clinical trials and practice.


Subject(s)
Aging , Longevity , Humans , Biomarkers
2.
Immunity ; 54(11): 2465-2480.e5, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34706222

ABSTRACT

Epigenetic reprogramming underlies specification of immune cell lineages, but patterns that uniquely define immune cell types and the mechanisms by which they are established remain unclear. Here, we identified lineage-specific DNA methylation signatures of six immune cell types from human peripheral blood and determined their relationship to other epigenetic and transcriptomic patterns. Sites of lineage-specific hypomethylation were associated with distinct combinations of transcription factors in each cell type. By contrast, sites of lineage-specific hypermethylation were restricted mostly to adaptive immune cells. PU.1 binding sites were associated with lineage-specific hypo- and hypermethylation in different cell types, suggesting that it regulates DNA methylation in a context-dependent manner. These observations indicate that innate and adaptive immune lineages are specified by distinct epigenetic mechanisms via combinatorial and context-dependent use of key transcription factors. The cell-specific epigenomics and transcriptional patterns identified serve as a foundation for future studies on immune dysregulation in diseases and aging.


Subject(s)
DNA Methylation , Epigenesis, Genetic , Epigenomics , Gene Expression Regulation , Immunity , Transcription Factors/metabolism , Transcriptome , Epigenomics/methods , Humans , Immune System/cytology , Immune System/immunology , Immune System/metabolism , Transcription Factors/genetics
3.
Proc Natl Acad Sci U S A ; 121(35): e2402813121, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39159379

ABSTRACT

Emerging evidence suggests that altered myelination is an important pathophysiologic correlate of several neurodegenerative diseases, including Alzheimer and Parkinson's diseases. Thus, improving myelin integrity may be an effective intervention to prevent and treat age-associated neurodegenerative pathologies. It has been suggested that cardiorespiratory fitness (CRF) may preserve and enhance cerebral myelination throughout the adult lifespan, but this hypothesis has not been fully tested. Among cognitively normal participants from two well-characterized studies spanning a wide age range, we assessed CRF operationalized as the maximum rate of oxygen consumption (VO2max) and myelin content defined by myelin water fraction (MWF) estimated through our advanced multicomponent relaxometry MRI method. We found significant positive correlations between VO2max and MWF across several white matter regions. Interestingly, the effect size of this association was higher in brain regions susceptible to early degeneration, including the frontal lobes and major white matter fiber tracts. Further, the interaction between age and VO2max exhibited i) a steeper positive slope in the older age group, suggesting that the association of VO2max with MWF is stronger at middle and older ages and ii) a steeper negative slope in the lower VO2max group, indicating that lower VO2max levels are associated with lower myelination with increasing age. Finally, the nonlinear pattern of myelin maturation and decline is VO2max-dependent with the higher VO2max group reaching the MWF peak at later ages. This study provides evidence of an interconnection between CRF and cerebral myelination and suggests therapeutic strategies for promoting brain health and attenuating white matter degeneration.


Subject(s)
Aging , Cardiorespiratory Fitness , Magnetic Resonance Imaging , Myelin Sheath , Oxygen Consumption , White Matter , Humans , Cardiorespiratory Fitness/physiology , Myelin Sheath/metabolism , Aging/physiology , Male , Female , Aged , Middle Aged , White Matter/metabolism , White Matter/diagnostic imaging , Oxygen Consumption/physiology , Adult , Aged, 80 and over , Brain/metabolism , Brain/diagnostic imaging
4.
Proc Natl Acad Sci U S A ; 121(27): e2317673121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38889126

ABSTRACT

Psychosocial experiences affect brain health and aging trajectories, but the molecular pathways underlying these associations remain unclear. Normal brain function relies on energy transformation by mitochondria oxidative phosphorylation (OxPhos). Two main lines of evidence position mitochondria both as targets and drivers of psychosocial experiences. On the one hand, chronic stress exposure and mood states may alter multiple aspects of mitochondrial biology; on the other hand, functional variations in mitochondrial OxPhos capacity may alter social behavior, stress reactivity, and mood. But are psychosocial exposures and subjective experiences linked to mitochondrial biology in the human brain? By combining longitudinal antemortem assessments of psychosocial factors with postmortem brain (dorsolateral prefrontal cortex) proteomics in older adults, we find that higher well-being is linked to greater abundance of the mitochondrial OxPhos machinery, whereas higher negative mood is linked to lower OxPhos protein content. Combined, positive and negative psychosocial factors explained 18 to 25% of the variance in the abundance of OxPhos complex I, the primary biochemical entry point that energizes brain mitochondria. Moreover, interrogating mitochondrial psychobiological associations in specific neuronal and nonneuronal brain cells with single-nucleus RNA sequencing (RNA-seq) revealed strong cell-type-specific associations for positive psychosocial experiences and mitochondria in glia but opposite associations in neurons. As a result, these "mind-mitochondria" associations were masked in bulk RNA-seq, highlighting the likely underestimation of true psychobiological effect sizes in bulk brain tissues. Thus, self-reported psychosocial experiences are linked to human brain mitochondrial phenotypes.


Subject(s)
Brain , Mitochondria , Oxidative Phosphorylation , Humans , Mitochondria/metabolism , Male , Female , Brain/metabolism , Aged , Stress, Psychological/metabolism , Middle Aged , Prefrontal Cortex/metabolism , Neurons/metabolism , Proteomics/methods , Affect/physiology
6.
Nat Rev Genet ; 21(2): 88-101, 2020 02.
Article in English | MEDLINE | ID: mdl-31690828

ABSTRACT

The past two centuries have witnessed an unprecedented rise in human life expectancy. Sustaining longer lives with reduced periods of disability will require an understanding of the underlying mechanisms of ageing, and genetics is a powerful tool for identifying these mechanisms. Large-scale genome-wide association studies have recently identified many loci that influence key human ageing traits, including lifespan. Multi-trait loci have been linked with several age-related diseases, suggesting shared ageing influences. Mutations that drive accelerated ageing in prototypical progeria syndromes in humans point to an important role for genome maintenance and stability. Together, these different strands of genetic research are highlighting pathways for the discovery of anti-ageing interventions that may be applicable in humans.


Subject(s)
Aging/genetics , Animals , Female , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Longevity/genetics , Mutation , Phenotype , Reproduction/genetics
7.
Circulation ; 149(4): 305-316, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38047387

ABSTRACT

BACKGROUND: It is unknown whether dietary intake of polyunsaturated fatty acids (PUFA) modifies the cardiovascular disease (CVD) risk associated with a family history of CVD. We assessed interactions between biomarkers of low PUFA intake and a family history in relation to long-term CVD risk in a large consortium. METHODS: Blood and tissue PUFA data from 40 885 CVD-free adults were assessed. PUFA levels ≤25th percentile were considered to reflect low intake of linoleic, alpha-linolenic, and eicosapentaenoic/docosahexaenoic acids (EPA/DHA). Family history was defined as having ≥1 first-degree relative who experienced a CVD event. Relative risks with 95% CI of CVD were estimated using Cox regression and meta-analyzed. Interactions were assessed by analyzing product terms and calculating relative excess risk due to interaction. RESULTS: After multivariable adjustments, a significant interaction between low EPA/DHA and family history was observed (product term pooled RR, 1.09 [95% CI, 1.02-1.16]; P=0.01). The pooled relative risk of CVD associated with the combined exposure to low EPA/DHA, and family history was 1.41 (95% CI, 1.30-1.54), whereas it was 1.25 (95% CI, 1.16-1.33) for family history alone and 1.06 (95% CI, 0.98-1.14) for EPA/DHA alone, compared with those with neither exposure. The relative excess risk due to interaction results indicated no interactions. CONCLUSIONS: A significant interaction between biomarkers of low EPA/DHA intake, but not the other PUFA, and a family history was observed. This novel finding might suggest a need to emphasize the benefit of consuming oily fish for individuals with a family history of CVD.


Subject(s)
Cardiovascular Diseases , Fatty Acids, Omega-3 , Animals , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Risk Factors , Docosahexaenoic Acids , Biomarkers
8.
Am J Hum Genet ; 109(9): 1638-1652, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055212

ABSTRACT

Hypoxia-inducible factor prolyl hydroxylase inhibitors (HIF-PHIs) are currently under clinical development for treating anemia in chronic kidney disease (CKD), but it is important to monitor their cardiovascular safety. Genetic variants can be used as predictors to help inform the potential risk of adverse effects associated with drug treatments. We therefore aimed to use human genetics to help assess the risk of adverse cardiovascular events associated with therapeutically altered EPO levels to help inform clinical trials studying the safety of HIF-PHIs. By performing a genome-wide association meta-analysis of EPO (n = 6,127), we identified a cis-EPO variant (rs1617640) lying in the EPO promoter region. We validated this variant as most likely causal in controlling EPO levels by using genetic and functional approaches, including single-base gene editing. Using this variant as a partial predictor for therapeutic modulation of EPO and large genome-wide association data in Mendelian randomization tests, we found no evidence (at p < 0.05) that genetically predicted long-term rises in endogenous EPO, equivalent to a 2.2-unit increase, increased risk of coronary artery disease (CAD, OR [95% CI] = 1.01 [0.93, 1.07]), myocardial infarction (MI, OR [95% CI] = 0.99 [0.87, 1.15]), or stroke (OR [95% CI] = 0.97 [0.87, 1.07]). We could exclude increased odds of 1.15 for cardiovascular disease for a 2.2-unit EPO increase. A combination of genetic and functional studies provides a powerful approach to investigate the potential therapeutic profile of EPO-increasing therapies for treating anemia in CKD.


Subject(s)
Anemia , Coronary Artery Disease , Myocardial Infarction , Renal Insufficiency, Chronic , Anemia/drug therapy , Anemia/genetics , Coronary Artery Disease/genetics , Genome-Wide Association Study , Humans , Mendelian Randomization Analysis , Myocardial Infarction/genetics , Renal Insufficiency, Chronic/genetics
9.
Ann Neurol ; 95(2): 260-273, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37801487

ABSTRACT

OBJECTIVE: Few studies have comprehensively examined how health and disease risk influence Alzheimer's disease (AD) biomarkers. The present study examined the association of 14 protein-based health indicators with plasma and neuroimaging biomarkers of AD and neurodegeneration. METHODS: In 706 cognitively normal adults, we examined whether 14 protein-based health indices (ie, SomaSignal® tests) were associated with concurrently measured plasma-based biomarkers of AD pathology (amyloid-ß [Aß]42/40 , tau phosphorylated at threonine-181 [pTau-181]), neuronal injury (neurofilament light chain [NfL]), and reactive astrogliosis (glial fibrillary acidic protein [GFAP]), brain volume, and cortical Aß and tau. In a separate cohort (n = 11,285), we examined whether protein-based health indicators associated with neurodegeneration also predict 25-year dementia risk. RESULTS: Greater protein-based risk for cardiovascular disease, heart failure mortality, and kidney disease was associated with lower Aß42/40 and higher pTau-181, NfL, and GFAP levels, even in individuals without cardiovascular or kidney disease. Proteomic indicators of body fat percentage, lean body mass, and visceral fat were associated with pTau-181, NfL, and GFAP, whereas resting energy rate was negatively associated with NfL and GFAP. Together, these health indicators predicted 12, 31, 50, and 33% of plasma Aß42/40 , pTau-181, NfL, and GFAP levels, respectively. Only protein-based measures of cardiovascular risk were associated with reduced regional brain volumes; these measures predicted 25-year dementia risk, even among those without clinically defined cardiovascular disease. INTERPRETATION: Subclinical peripheral health may influence AD and neurodegenerative disease processes and relevant biomarker levels, particularly NfL. Cardiovascular health, even in the absence of clinically defined disease, plays a central role in brain aging and dementia. ANN NEUROL 2024;95:260-273.


Subject(s)
Alzheimer Disease , Cardiovascular Diseases , Kidney Diseases , Neurodegenerative Diseases , Adult , Humans , Alzheimer Disease/diagnostic imaging , Proteomics , Amyloid beta-Peptides , Biomarkers , tau Proteins
10.
Circ Res ; 132(11): 1428-1443, 2023 05 26.
Article in English | MEDLINE | ID: mdl-37154037

ABSTRACT

BACKGROUND: Few effective therapies exist to improve lower extremity muscle pathology and mobility loss due to peripheral artery disease (PAD), in part because mechanisms associated with functional impairment remain unclear. METHODS: To better understand mechanisms of muscle impairment in PAD, we performed in-depth transcriptomic and proteomic analyses on gastrocnemius muscle biopsies from 31 PAD participants (mean age, 69.9 years) and 29 age- and sex-matched non-PAD controls (mean age, 70.0 years) free of diabetes or limb-threatening ischemia. RESULTS: Transcriptomic and proteomic analyses suggested activation of hypoxia-compensatory mechanisms in PAD muscle, including inflammation, fibrosis, apoptosis, angiogenesis, unfolded protein response, and nerve and muscle repair. Stoichiometric proportions of mitochondrial respiratory proteins were aberrant in PAD compared to non-PAD, suggesting that respiratory proteins not in complete functional units are not removed by mitophagy, likely contributing to abnormal mitochondrial activity. Supporting this hypothesis, greater mitochondrial respiratory protein abundance was significantly associated with greater complex II and complex IV respiratory activity in non-PAD but not in PAD. Rate-limiting glycolytic enzymes, such as hexokinase and pyruvate kinase, were less abundant in muscle of people with PAD compared with non-PAD participants, suggesting diminished glucose metabolism. CONCLUSIONS: In PAD muscle, hypoxia induces accumulation of mitochondria respiratory proteins, reduced activity of rate-limiting glycolytic enzymes, and an enhanced integrated stress response that modulates protein translation. These mechanisms may serve as targets for disease modification.


Subject(s)
Peripheral Arterial Disease , Transcriptome , Humans , Aged , Proteomics , Muscle, Skeletal/metabolism , Ischemia/metabolism , Hypoxia/metabolism
11.
J Med Genet ; 61(5): 435-442, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38191510

ABSTRACT

BACKGROUND: Brain iron deposition is common in dementia, but whether serum iron is a causal risk factor is unknown. We aimed to determine whether genetic predisposition to higher serum iron status biomarkers increased risk of dementia and atrophy of grey matter. METHODS: We analysed UK Biobank participants clustered into European (N=451284), African (N=7477) and South Asian (N=9570) groups by genetic similarity to the 1000 genomes project. Using Mendelian randomisation methods, we estimated the association between genetically predicted serum iron (transferrin saturation [TSAT] and ferritin), grey matter volume and genetic liability to clinically defined dementia (including Alzheimer's disease [AD], non-AD dementia, and vascular dementia) from hospital and primary care records. We also performed time-to-event (competing risks) analysis of the TSAT polygenic score on risk of clinically defined non-AD dementia. RESULTS: In Europeans, higher genetically predicted TSAT increased genetic liability to dementia (Odds Ratio [OR]: 1.15, 95% Confidence Intervals [CI] 1.04 to 1.26, p=0.0051), non-AD dementia (OR: 1.27, 95% CI 1.12 to 1.45, p=0.00018) and vascular dementia (OR: 1.37, 95% CI 1.12 to 1.69, p=0.0023), but not AD (OR: 1.00, 95% CI 0.86 to 1.15, p=0.97). Higher TSAT was also associated with increased risk of non-AD dementia in participants of African, but not South Asian groups. In survival analysis using a TSAT polygenic score, the effect was independent of apolipoprotein-E ε4 genotype (with adjustment subdistribution Hazard Ratio: 1.74, 95% CI 1.33 to 2.28, p=0.00006). Genetically predicted TSAT was associated with lower grey matter volume in caudate, putamen and thalamus, and not in other areas of interest. DISCUSSION: Genetic evidence supports a causal relationship between higher TSAT and risk of clinically defined non-AD and vascular dementia, in European and African groups. This association appears to be independent of apolipoprotein-E ε4.


Subject(s)
Dementia, Vascular , Iron , Humans , Biological Specimen Banks , UK Biobank , Risk Factors , Biomarkers , Apolipoproteins , Mendelian Randomization Analysis
12.
PLoS Genet ; 18(11): e1010506, 2022 11.
Article in English | MEDLINE | ID: mdl-36441670

ABSTRACT

Short telomeres induce a DNA damage response (DDR) that evokes apoptosis and senescence in human cells. An extant question is the contribution of telomere dysfunction-induced DDR to the phenotypes observed in aging and telomere biology disorders. One candidate is RAP1, a telomere-associated protein that also controls transcription at extratelomeric regions. To distinguish these roles, we generated a knockin mouse carrying a mutated Rap1, which was incapable of binding telomeres and did not result in eroded telomeres or a DDR. Primary Rap1 knockin embryonic fibroblasts showed decreased RAP1 expression and re-localization away from telomeres, with an increased cytosolic distribution akin to that observed in human fibroblasts undergoing telomere erosion. Rap1 knockin mice were viable, but exhibited transcriptomic alterations, proinflammatory cytokine/chemokine signaling, reduced lifespan, and decreased healthspan with increased body weight/fasting blood glucose levels, spontaneous tumor incidence, and behavioral deficits. Taken together, our data present mechanisms distinct from telomere-induced DDR that underlie age-related phenotypes.


Subject(s)
Shelterin Complex , Telomere , Animals , Humans , Mice , Longevity , Phenotype , Telomere/genetics , Telomere Shortening
13.
Am J Physiol Cell Physiol ; 326(2): C589-C605, 2024 02 01.
Article in English | MEDLINE | ID: mdl-38189132

ABSTRACT

The pathophysiology of muscle damage in peripheral artery disease (PAD) includes increased oxidant production and impaired antioxidant defenses. Epicatechin (EPI), a naturally occurring flavanol, has antioxidant properties that may mediate the beneficial effects of natural products such as cocoa. In a phase II randomized trial, a cocoa-flavanol-rich beverage significantly improved walking performance compared with a placebo in people with PAD. In the present work, the molecular mechanisms underlying the therapeutic effect of cocoa flavanols were investigated by analyzing baseline and follow-up muscle biopsies from participants. Increases in nuclear factor erythroid 2-related factor 2 (Nrf2) target antioxidants heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase [quinone] 1 (NQO1) in the cocoa group were significantly associated with reduced accumulation of central nuclei, a myopathy indicator, in type II muscle fibers (P = 0.017 and P = 0.023, respectively). Protein levels of the mitochondrial respiratory complex III subunit, cytochrome b-c1 complex subunit 2 (UQCRC2), were significantly higher in the cocoa group than in the placebo group (P = 0.032), and increases in UQCRC2 were significantly associated with increased levels of Nrf2 target antioxidants HO-1 and NQO1 (P = 0.001 and P = 0.035, respectively). Exposure of non-PAD human myotubes to ex vivo serum from patients with PAD reduced Nrf2 phosphorylation, an indicator of activation, increased hydrogen peroxide production and oxidative stress, and reduced mitochondrial respiration. Treatment of myotubes with EPI in the presence of serum from patients with PAD increased Nrf2 phosphorylation and protected against PAD serum-induced oxidative stress and mitochondrial dysfunction. Overall, these findings suggest that cocoa flavanols may enhance antioxidant capacity in PAD via Nrf2 activation.NEW & NOTEWORTHY The current study supports the hypothesis that in people with PAD, cocoa flavanols activate Nrf2, thereby increasing antioxidant protein levels, protecting against skeletal muscle damage, and increasing mitochondrial protein abundance. These results suggest that Nrf2 activation may be an important therapeutic target for improving walking performance in people with PAD.


Subject(s)
Cacao , Catechin , Peripheral Arterial Disease , Humans , Antioxidants/metabolism , Antioxidants/pharmacology , Cacao/chemistry , Catechin/metabolism , Catechin/pharmacology , Heme Oxygenase-1/metabolism , Heme Oxygenase-1/pharmacology , Muscles , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Peripheral Arterial Disease/drug therapy , Peripheral Arterial Disease/metabolism , Polyphenols/metabolism , Polyphenols/pharmacology
14.
Neurobiol Dis ; 197: 106539, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38789058

ABSTRACT

BACKGROUND: Iron overload is observed in neurodegenerative diseases, especially Alzheimer's disease (AD) and Parkinson's disease (PD). Homozygotes for the iron-overload (haemochromatosis) causing HFE p.C282Y variant have increased risk of dementia and PD. Whether brain iron deposition is causal or secondary to the neurodegenerative processes in the general population is unclear. METHODS: We analysed 39,533 UK Biobank participants of European genetic ancestry with brain MRI data. We studied brain iron estimated by R2* and quantitative susceptibility mapping (QSM) in 8 subcortical regions: accumbens, amygdala, caudate, hippocampus, pallidum, putamen, substantia nigra, and thalamus. We performed genome-wide associations studies (GWAS) and used Mendelian Randomization (MR) methods to estimate the causal effect of brain iron on grey matter volume, and risk of AD, non-AD and PD. We also used MR to test whether genetic liability to AD or PD causally increased brain iron (R2* and QSM). FINDINGS: In GWAS of R2* and QSM we replicated 83% of previously reported genetic loci and identified 174 further loci across all eight brain regions. Higher genetically predicted brain iron, using both R2* and QSM, was associated with lower grey matter volumes in the caudate, putamen and thalamus (e.g., Beta-putamenQSM: -0.37, p = 2*10-46). Higher genetically predicted thalamus R2* was associated with increased risk of non-AD dementia (OR 1.36(1.16;1.60), p = 2*10-4) but not AD (p > 0.05). In males, genetically predicted putamen R2* increased non-AD dementia risk, but not in females. Higher genetically predicted iron in the caudate, putamen, and substantia nigra was associated with an increased risk of PD (Odds Ratio QSM âˆ¼ substantia-nigra 1.21(1.07;1.37), p = 0.003). Genetic liability to AD or PD was not associated with R2* or QSM in the dementia or PD-associated regions. INTERPRETATION: Our genetic analysis supports a causal effect of higher iron deposition in specific subcortical brain regions for Parkinson's disease, grey matter volume, and non-Alzheimer's dementia.


Subject(s)
Dementia , Gray Matter , Iron , Parkinson Disease , Aged , Female , Humans , Male , Middle Aged , Brain/pathology , Brain/diagnostic imaging , Brain/metabolism , Cohort Studies , Dementia/genetics , Dementia/pathology , Dementia/diagnostic imaging , Genome-Wide Association Study , Gray Matter/diagnostic imaging , Gray Matter/pathology , Gray Matter/metabolism , Iron/metabolism , Magnetic Resonance Imaging , Parkinson Disease/genetics , Parkinson Disease/pathology , Parkinson Disease/diagnostic imaging , UK Biobank , United Kingdom/epidemiology
15.
Am J Hum Genet ; 108(2): 284-294, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33421400

ABSTRACT

Mastocytosis is a rare myeloid neoplasm characterized by uncontrolled expansion of mast cells, driven in >80% of affected individuals by acquisition of the KIT D816V mutation. To explore the hypothesis that inherited variation predisposes to mastocytosis, we performed a two-stage genome-wide association study, analyzing 1,035 individuals with KIT D816V positive disease and 17,960 healthy control individuals from five European populations. After quality control, we tested 592,007 SNPs at stage 1 and 75 SNPs at stage 2 for association by using logistic regression and performed a fixed effects meta-analysis to combine evidence across the two stages. From the meta-analysis, we identified three intergenic SNPs associated with mastocytosis that achieved genome-wide significance without heterogeneity between cohorts: rs4616402 (pmeta = 1.37 × 10-15, OR = 1.52), rs4662380 (pmeta = 2.11 × 10-12, OR = 1.46), and rs13077541 (pmeta = 2.10 × 10-9, OR = 1.33). Expression quantitative trait analyses demonstrated that rs4616402 is associated with the expression of CEBPA (peQTL = 2.3 × 10-14), a gene encoding a transcription factor known to play a critical role in myelopoiesis. The role of the other two SNPs is less clear: rs4662380 is associated with expression of the long non-coding RNA gene TEX41 (peQTL = 2.55 × 10-11), whereas rs13077541 is associated with the expression of TBL1XR1, which encodes transducin (ß)-like 1 X-linked receptor 1 (peQTL = 5.70 × 10-8). In individuals with available data and non-advanced disease, rs4616402 was associated with age at presentation (p = 0.009; beta = 4.41; n = 422). Additional focused analysis identified suggestive associations between mastocytosis and genetic variation at TERT, TPSAB1/TPSB2, and IL13. These findings demonstrate that multiple germline variants predispose to KIT D816V positive mastocytosis and provide novel avenues for functional investigation.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Mastocytosis/genetics , Polymorphism, Single Nucleotide , Proto-Oncogene Proteins c-kit/genetics , Amino Acid Transport System y+/genetics , CCAAT-Enhancer-Binding Proteins/genetics , DNA, Intergenic , Female , Humans , Interleukin-13/genetics , Introns , Male , RNA, Long Noncoding/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Repressor Proteins/genetics , Telomerase/genetics , Tryptases/genetics
16.
Am J Physiol Heart Circ Physiol ; 327(2): H509-H517, 2024 08 01.
Article in English | MEDLINE | ID: mdl-38874616

ABSTRACT

Aging is associated with a significant decline in aerobic capacity assessed by maximal exercise oxygen consumption (V̇o2max). The relative contributions of the specific V̇o2 components driving this decline, namely cardiac output (CO) and arteriovenous oxygen difference (A - V)O2, remain unclear. We examined this issue by analyzing data from 99 community-dwelling participants (baseline age: 21-96 yr old; average follow-up: 12.6 yr old) from the Baltimore Longitudinal Study of Aging, free of clinical cardiovascular disease. V̇o2peak, a surrogate of V̇o2max, was used to assess aerobic capacity during upright cycle ergometry. Peak exercise left ventricular volumes, heart rate, and CO were estimated using repeated gated cardiac blood pool scans. The Fick equation was used to calculate (A - V)O2diff,peak from COpeak and V̇o2peak. In unadjusted models, V̇o2peak, (A - V)O2diff,peak, and COpeak declined longitudinally over time at steady rates with advancing age. In multiple linear regression models adjusting for baseline values and peak workload, however, steeper declines in V̇o2peak and (A - V)O2diff,peak were observed with advanced entry age but not in COpeak. The association between the declines in V̇o2peak and (A - V)O2diff,peak was stronger among those ≥50 yr old compared with their younger counterparts, but the difference between the two age groups did not reach statistical significance. These findings suggest that age-associated impairment of peripheral oxygen utilization during maximal exercise poses a stronger limitation on peak V̇o2 than that of CO. Future studies examining interventions targeting the structure and function of peripheral muscles and their vasculature to mitigate age-associated declines in (A - V)O2diff are warranted.NEW & NOTEWORTHY The age-associated decline in aerobic exercise performance over an average of 13 yr in community-dwelling healthy individuals is more closely associated with decreased peripheral oxygen utilization rather than decreased cardiac output. This association was more evident in older than younger individuals. These findings suggest that future studies with larger samples examine whether these associations vary across the age range and whether the decline in cardiac output plays a greater role earlier in life. In addition, studies focused on determinants of peripheral oxygen uptake by exercising muscle may guide the selection of preventive strategies designed to maintain physical fitness with advancing age.


Subject(s)
Aging , Cardiac Output , Oxygen Consumption , Humans , Aged , Middle Aged , Male , Oxygen Consumption/physiology , Female , Adult , Aging/physiology , Aging/metabolism , Longitudinal Studies , Aged, 80 and over , Young Adult , Baltimore , Age Factors , Exercise Tolerance , Exercise Test
17.
Ann Neurol ; 93(4): 805-818, 2023 04.
Article in English | MEDLINE | ID: mdl-36571386

ABSTRACT

OBJECTIVE: We examined medical records to determine health conditions associated with dementia at varied intervals prior to dementia diagnosis in participants from the Baltimore Longitudinal Study of Aging (BLSA). METHODS: Data were available for 347 Alzheimer's disease (AD), 76 vascular dementia (VaD), and 811 control participants without dementia. Logistic regressions were performed associating International Classification of Diseases, 9th Revision (ICD-9) health codes with dementia status across all time points, at 5 and 1 year(s) prior to dementia diagnosis, and at the year of diagnosis, controlling for age, sex, and follow-up length of the medical record. RESULTS: In AD, the earliest and most consistent associations across all time points included depression, erectile dysfunction, gait abnormalities, hearing loss, and nervous and musculoskeletal symptoms. Cardiomegaly, urinary incontinence, non-epithelial skin cancer, and pneumonia were not significant until 1 year before dementia diagnosis. In VaD, the earliest and most consistent associations across all time points included abnormal electrocardiogram (EKG), cardiac dysrhythmias, cerebrovascular disease, non-epithelial skin cancer, depression, and hearing loss. Atrial fibrillation, occlusion of cerebral arteries, essential tremor, and abnormal reflexes were not significant until 1 year before dementia diagnosis. INTERPRETATION: These findings suggest that some health conditions are associated with future dementia beginning at least 5 years before dementia diagnosis and are consistently seen over time, while others only reach significance closer to the date of diagnosis. These results also show that there are both shared and distinctive health conditions associated with AD and VaD. These results reinforce the need for medical intervention and treatment to lessen the impact of health comorbidities in the aging population. ANN NEUROL 2023;93:805-818.


Subject(s)
Alzheimer Disease , Cerebrovascular Disorders , Dementia, Vascular , Male , Humans , Aged , Alzheimer Disease/complications , Alzheimer Disease/epidemiology , Alzheimer Disease/diagnosis , Dementia, Vascular/complications , Dementia, Vascular/epidemiology , Longitudinal Studies , Cerebrovascular Disorders/epidemiology , Comorbidity
18.
Ann Neurol ; 93(5): 1012-1022, 2023 05.
Article in English | MEDLINE | ID: mdl-36695634

ABSTRACT

OBJECTIVE: Identification of genetic risk factors for Parkinson disease (PD) has to date been primarily limited to the study of single nucleotide variants, which only represent a small fraction of the genetic variation in the human genome. Consequently, causal variants for most PD risk are not known. Here we focused on structural variants (SVs), which represent a major source of genetic variation in the human genome. We aimed to discover SVs associated with PD risk by performing the first large-scale characterization of SVs in PD. METHODS: We leveraged a recently developed computational pipeline to detect and genotype SVs from 7,772 Illumina short-read whole genome sequencing samples. Using this set of SV variants, we performed a genome-wide association study using 2,585 cases and 2,779 controls and identified SVs associated with PD risk. Furthermore, to validate the presence of these variants, we generated a subset of matched whole-genome long-read sequencing data. RESULTS: We genotyped and tested 3,154 common SVs, representing over 412 million nucleotides of previously uncatalogued genetic variation. Using long-read sequencing data, we validated the presence of three novel deletion SVs that are associated with risk of PD from our initial association analysis, including a 2 kb intronic deletion within the gene LRRN4. INTERPRETATION: We identified three SVs associated with genetic risk of PD. This study represents the most comprehensive assessment of the contribution of SVs to the genetic risk of PD to date. ANN NEUROL 2023;93:1012-1022.


Subject(s)
Genome-Wide Association Study , Parkinson Disease , Humans , Parkinson Disease/genetics , Genome, Human , Whole Genome Sequencing , Genotype
19.
J Vasc Surg ; 79(4): 893-903, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38122859

ABSTRACT

OBJECTIVE: Among people with peripheral artery disease (PAD), perceived change in walking difficulty over time, compared with people without PAD, is unclear. Among people reporting no change in walking difficulty over time, differences in objectively measured change in walking performance between people with and without PAD are unknown. METHODS: A total of 1289 participants were included. Eight hundred seventy-four participants with PAD (aged 71.1 ± 9.1 years) were identified from noninvasive vascular laboratories and 415 without PAD (aged 69.9 ± 7.6 years) were identified from people with normal vascular laboratory testing or general medical practices in Chicago. The Walking Impairment Questionnaire and 6-minute walk were completed at baseline and 1-year follow-up. The Walking Impairment Questionnaire assessed perceived difficulty walking due to symptoms in the calves or buttocks on a Likert scale (range, 0-4). Symptom change was determined by comparing difficulty reported at 1-year follow-up to difficulty reported at baseline. RESULTS: At 1-year follow-up, 31.9% of participants with and 20.6% of participants without PAD reported walking difficulty that was improved (P < .01), whereas 41.2% vs 55%, respectively, reported walking difficulty that was unchanged (P < .01). Among all reporting no change in walking difficulty, participants with PAD declined in 6-minute walk, whereas participants without PAD improved (-10 vs +15 meters; mean difference, -25; 95% confidence interval, -38 to -13; P < .01). CONCLUSIONS: Most people with PAD reported improvement or no change in walking difficulty from calf or buttock symptoms at one-year follow-up. Among all participants who perceived stable walking ability, those with PAD had significant greater declines in objectively measured walking performance, compared with people without PAD.


Subject(s)
Peripheral Arterial Disease , Humans , Leg , Mobility Limitation , Patient Reported Outcome Measures , Peripheral Arterial Disease/diagnosis , Walking , Middle Aged , Aged , Aged, 80 and over
20.
Brain Behav Immun ; 120: 604-619, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38977137

ABSTRACT

While immune function is known to play a mechanistic role in Alzheimer's disease (AD), whether immune proteins in peripheral circulation influence the rate of amyloid-ß (Aß) progression - a central feature of AD - remains unknown. In the Baltimore Longitudinal Study of Aging, we quantified 942 immunological proteins in plasma and identified 32 (including CAT [catalase], CD36 [CD36 antigen], and KRT19 [keratin 19]) associated with rates of cortical Aß accumulation measured with positron emission tomography (PET). Longitudinal changes in a subset of candidate proteins also predicted Aß progression, and the mid- to late-life (20-year) trajectory of one protein, CAT, was associated with late-life Aß-positive status in the Atherosclerosis Risk in Communities (ARIC) study. Genetic variation that influenced plasma levels of CAT, CD36 and KRT19 predicted rates of Aß accumulation, including causal relationships with Aß PET levels identified with two-sample Mendelian randomization. In addition to associations with tau PET and plasma AD biomarker changes, as well as expression patterns in human microglia subtypes and neurovascular cells in AD brain tissue, we showed that 31 % of candidate proteins were related to mid-life (20-year) or late-life (8-year) dementia risk in ARIC. Our findings reveal plasma proteins associated with longitudinal Aß accumulation, and identify specific peripheral immune mediators that may contribute to the progression of AD pathophysiology.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Biomarkers , Disease Progression , Positron-Emission Tomography , Humans , Amyloid beta-Peptides/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/blood , Alzheimer Disease/immunology , Alzheimer Disease/genetics , Male , Female , Aged , Longitudinal Studies , Positron-Emission Tomography/methods , Biomarkers/blood , Biomarkers/metabolism , Proteome/metabolism , Middle Aged , Brain/metabolism , Aging/metabolism , Aging/immunology , Aged, 80 and over
SELECTION OF CITATIONS
SEARCH DETAIL