Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nat Immunol ; 23(7): 1121-1131, 2022 07.
Article in English | MEDLINE | ID: mdl-35761084

ABSTRACT

Tissue-resident memory T cells (TRM cells) provide protective immunity, but the contributions of specific tissue environments to TRM cell differentiation and homeostasis are not well understood. In the present study, the diversity of gene expression and genome accessibility by mouse CD8+ TRM cells from distinct organs that responded to viral infection revealed both shared and tissue-specific transcriptional and epigenetic signatures. TRM cells in the intestine and salivary glands expressed transforming growth factor (TGF)-ß-induced genes and were maintained by ongoing TGF-ß signaling, whereas those in the fat, kidney and liver were not. Constructing transcriptional-regulatory networks identified the transcriptional repressor Hic1 as a critical regulator of TRM cell differentiation in the small intestine and showed that Hic1 overexpression enhanced TRM cell differentiation and protection from infection. Provision of a framework for understanding how CD8+ TRM cells adapt to distinct tissue environments, and identification of tissue-specific transcriptional regulators mediating these adaptations, inform strategies to boost protective memory responses at sites most vulnerable to infection.


Subject(s)
CD8-Positive T-Lymphocytes , Immunologic Memory , Animals , Cell Differentiation/genetics , Epigenesis, Genetic , Mice , Transcription Factors/metabolism , Transforming Growth Factor beta/metabolism
2.
Immunity ; 56(1): 207-223.e8, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36580919

ABSTRACT

Tissue-resident memory CD8+ T (TRM) cells are a subset of memory T cells that play a critical role in limiting early pathogen spread and controlling infection. TRM cells exhibit differences across tissues, but their potential heterogeneity among distinct anatomic compartments within the small intestine and colon has not been well recognized. Here, by analyzing TRM cells from the lamina propria and epithelial compartments of the small intestine and colon, we showed that intestinal TRM cells exhibited distinctive patterns of cytokine and granzyme expression along with substantial transcriptional, epigenetic, and functional heterogeneity. The T-box transcription factor Eomes, which represses TRM cell formation in some tissues, exhibited unexpected context-specific regulatory roles in supporting the maintenance of established TRM cells in the small intestine, but not in the colon. Taken together, these data provide previously unappreciated insights into the heterogeneity and differential requirements for the formation vs. maintenance of intestinal TRM cells.


Subject(s)
CD8-Positive T-Lymphocytes , Memory T Cells , CD8-Positive T-Lymphocytes/metabolism , Immunologic Memory , Intestine, Small , Colon
3.
bioRxiv ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38585842

ABSTRACT

Tissue-resident memory CD8 T cells (TRM) kill infected cells and recruit additional immune cells to limit pathogen invasion at barrier sites. Small intestinal (SI) TRM cells consist of distinct subpopulations with higher expression of effector molecules or greater memory potential. We hypothesized that occupancy of diverse anatomical niches imprints these distinct TRM transcriptional programs. We leveraged human samples and a murine model of acute systemic viral infection to profile the location and transcriptome of pathogen-specific TRM cell differentiation at single-transcript resolution. We developed computational approaches to capture cellular locations along three anatomical axes of the small intestine and to visualize the spatiotemporal distribution of cell types and gene expression. TRM populations were spatially segregated: with more effector- and memory-like TRM preferentially localized at the villus tip or crypt, respectively. Modeling ligand-receptor activity revealed patterns of key cellular interactions and cytokine signaling pathways that initiate and maintain TRM differentiation and functional diversity, including different TGFß sources. Alterations in the cellular networks induced by loss of TGFßRII expression revealed a model consistent with TGFß promoting progressive TRM maturation towards the villus tip. Ultimately, we have developed a framework for the study of immune cell interactions with the spectrum of tissue cell types, revealing that T cell location and functional state are fundamentally intertwined.

4.
J Clin Invest ; 131(7)2021 04 01.
Article in English | MEDLINE | ID: mdl-33792560

ABSTRACT

Adoptive T cell therapies (ACTs) hold great promise in cancer treatment, but low overall response rates in patients with solid tumors underscore remaining challenges in realizing the potential of this cellular immunotherapy approach. Promoting CD8+ T cell adaptation to tissue residency represents an underutilized but promising strategy to improve tumor-infiltrating lymphocyte (TIL) function. Here, we report that deletion of the HIF negative regulator von Hippel-Lindau (VHL) in CD8+ T cells induced HIF-1α/HIF-2α-dependent differentiation of tissue-resident memory-like (Trm-like) TILs in mouse models of malignancy. VHL-deficient TILs accumulated in tumors and exhibited a core Trm signature despite an exhaustion-associated phenotype, which led to retained polyfunctionality and response to αPD-1 immunotherapy, resulting in tumor eradication and protective tissue-resident memory. VHL deficiency similarly facilitated enhanced accumulation of chimeric antigen receptor (CAR) T cells with a Trm-like phenotype in tumors. Thus, HIF activity in CD8+ TILs promotes accumulation and antitumor activity, providing a new strategy to enhance the efficacy of ACTs.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/immunology , CD8-Positive T-Lymphocytes/immunology , Hypoxia-Inducible Factor 1, alpha Subunit/immunology , Immunity, Cellular , Immunologic Memory , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms, Experimental/immunology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , CD8-Positive T-Lymphocytes/pathology , Cell Line, Tumor , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Lymphocytes, Tumor-Infiltrating/pathology , Mice , Mice, Knockout , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/immunology
5.
Front Immunol ; 9: 1808, 2018.
Article in English | MEDLINE | ID: mdl-30150983

ABSTRACT

The activating receptor NKG2D and its ligands are recognized as a potent immune axis that controls tumor growth and microbial infections. With regards to cancer surveillance, various studies have demonstrated the antitumor function mediated by NKG2D on natural killer cells and on conventional and unconventional T cells. The use of NKG2D-deficient mice established the importance of NKG2D in delaying tumor development in transgenic mouse models of cancer. However, we recently demonstrated an unexpected, flip side to this coin, the ability for NKG2D to contribute to tumor growth in a model of inflammation-driven liver cancer. With a focus on the liver, here, we review current knowledge of NKG2D-mediated tumor surveillance and discuss evidence supporting a dual role for NKG2D in cancer immunity. We postulate that in certain advanced cancers, expression of ligands for NKG2D can drive cancer progression rather than rejection. We propose that the nature of the microenvironment within and surrounding tumors impacts the outcome of NKG2D activation. In a form of autoimmune attack, NKG2D promotes tissue damage, mostly in the inflamed tissue adjacent to the tumor, facilitating tumor progression while being ineffective at rejecting transformed cells in the tumor bed.


Subject(s)
Immunity , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Neoplasms/etiology , Neoplasms/metabolism , Animals , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Disease Progression , Hepatitis/complications , Humans , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Ligands , Liver Neoplasms/etiology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , NK Cell Lectin-Like Receptor Subfamily K/genetics , Neoplasms/pathology , Protein Binding , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Tumor Microenvironment/immunology
SELECTION OF CITATIONS
SEARCH DETAIL