Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
Cancer Cell ; 10(6): 515-27, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17157791

ABSTRACT

Recent studies suggest that thousands of genes may contribute to breast cancer pathophysiologies when deregulated by genomic or epigenomic events. Here, we describe a model "system" to appraise the functional contributions of these genes to breast cancer subsets. In general, the recurrent genomic and transcriptional characteristics of 51 breast cancer cell lines mirror those of 145 primary breast tumors, although some significant differences are documented. The cell lines that comprise the system also exhibit the substantial genomic, transcriptional, and biological heterogeneity found in primary tumors. We show, using Trastuzumab (Herceptin) monotherapy as an example, that the system can be used to identify molecular features that predict or indicate response to targeted therapies or other physiological perturbations.


Subject(s)
Breast Neoplasms/classification , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Cell Line, Tumor , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Genomics , Humans , Neoplasm Proteins/analysis
2.
Mol Cell Biol ; 27(21): 7551-9, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17785439

ABSTRACT

The Wnt signaling pathway is deregulated in over 90% of human colorectal cancers. beta-Catenin, the central signal transducer of the Wnt pathway, can directly modulate gene expression by interacting with transcription factors of the TCF/LEF family. In the present study we investigate the role of Wnt signaling in the homeostasis of intestinal epithelium by using tissue-specific, inducible beta-catenin gene ablation in adult mice. Block of Wnt/beta-catenin signaling resulted in rapid loss of transient-amplifying cells and crypt structures. Importantly, intestinal stem cells were induced to terminally differentiate upon deletion of beta-catenin, resulting in a complete block of intestinal homeostasis and fatal loss of intestinal function. Transcriptional profiling of mutant crypt mRNA isolated by laser capture microdissection confirmed those observations and allowed us to identify genes potentially responsible for the functional preservation of intestinal stem cells. Our data demonstrate an essential requirement of Wnt/beta-catenin signaling for the maintenance of the intestinal epithelium in the adult organism. This challenges attempts to target aberrant Wnt signaling as a new therapeutic strategy to treat colorectal cancer.


Subject(s)
Homeostasis , Intestines/cytology , Intestines/physiology , Stem Cells/cytology , Wnt Proteins/metabolism , beta Catenin/metabolism , Animals , Biomarkers/metabolism , Cell Death , Cell Differentiation , Cell Lineage , Cell Proliferation , Down-Regulation , Intestinal Mucosa/cytology , Intestinal Mucosa/metabolism , Intestinal Mucosa/ultrastructure , Intestines/ultrastructure , Mice , Mice, Mutant Strains , Signal Transduction , Stem Cells/metabolism , Transcription, Genetic , beta Catenin/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL