Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Cell ; 170(3): 429-442.e11, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28753423

ABSTRACT

Hunger, driven by negative energy balance, elicits the search for and consumption of food. While this response is in part mediated by neurons in the hypothalamus, the role of specific cell types in other brain regions is less well defined. Here, we show that neurons in the dorsal raphe nucleus, expressing vesicular transporters for GABA or glutamate (hereafter, DRNVgat and DRNVGLUT3 neurons), are reciprocally activated by changes in energy balance and that modulating their activity has opposite effects on feeding-DRNVgat neurons increase, whereas DRNVGLUT3 neurons suppress, food intake. Furthermore, modulation of these neurons in obese (ob/ob) mice suppresses food intake and body weight and normalizes locomotor activity. Finally, using molecular profiling, we identify druggable targets in these neurons and show that local infusion of agonists for specific receptors on these neurons has potent effects on feeding. These data establish the DRN as an important node controlling energy balance. PAPERCLIP.


Subject(s)
Appetite Regulation , Dorsal Raphe Nucleus/metabolism , Neurons/metabolism , Animals , Body Weight , Brain/physiology , Dorsal Raphe Nucleus/cytology , Electrophysiology , Fasting , Hunger , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Optogenetics
2.
Mol Metab ; 78: 101821, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37806486

ABSTRACT

The disease progression of the metabolic syndrome is associated with prolonged hyperlipidemia and insulin resistance, eventually giving rise to impaired insulin secretion, often concomitant with hypoadiponectinemia. As an adipose tissue derived hormone, adiponectin is beneficial for insulin secretion and ß cell health and differentiation. However, the down-stream pathway of adiponectin in the pancreatic islets has not been studied extensively. Here, along with the overall reduction of endocrine pancreatic function in islets from adiponectin KO mice, we examine PPARα and HNF4α as additional down-regulated transcription factors during a prolonged metabolic challenge. To elucidate the function of ß cell-specific PPARα and HNF4α expression, we developed doxycycline inducible pancreatic ß cell-specific PPARα (ß-PPARα) and HNF4α (ß-HNF4α) overexpression mice. ß-PPARα mice exhibited improved protection from lipotoxicity, but elevated ß-oxidative damage in the islets, and also displayed lowered phospholipid levels and impaired glucose-stimulated insulin secretion. ß-HNF4α mice showed a more severe phenotype when compared to ß-PPARα mice, characterized by lower body weight, small islet mass and impaired insulin secretion. RNA-sequencing of the islets of these models highlights overlapping yet unique roles of ß-PPARα and ß-HNF4α. Given that ß-HNF4α potently induces PPARα expression, we define a novel adiponectin-HNF4α-PPARα cascade. We further analyzed downstream genes consistently regulated by this axis. Among them, the islet amyloid polypeptide (IAPP) gene is an important target and accumulates in adiponectin KO mice. We propose a new mechanism of IAPP aggregation in type 2 diabetes through reduced adiponectin action.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin-Secreting Cells , Animals , Mice , Adiponectin/genetics , Adiponectin/metabolism , Diabetes Mellitus, Type 2/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , PPAR alpha/genetics , PPAR alpha/metabolism
3.
Nat Commun ; 14(1): 6531, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37848446

ABSTRACT

Adiponectin is a secretory protein, primarily produced in adipocytes. However, low but detectable expression of adiponectin can be observed in cell types beyond adipocytes, particularly in kidney tubular cells, but its local renal role is unknown. We assessed the impact of renal adiponectin by utilizing male inducible kidney tubular cell-specific adiponectin overexpression or knockout mice. Kidney-specific adiponectin overexpression induces a doubling of phosphoenolpyruvate carboxylase expression and enhanced pyruvate-mediated glucose production, tricarboxylic acid cycle intermediates and an upregulation of fatty acid oxidation (FAO). Inhibition of FAO reduces the adiponectin-induced enhancement of glucose production, highlighting the role of FAO in the induction of renal gluconeogenesis. In contrast, mice lacking adiponectin in the kidney exhibit enhanced glucose tolerance, lower utilization and greater accumulation of lipid species. Hence, renal adiponectin is an inducer of gluconeogenesis by driving enhanced local FAO and further underlines the important systemic contribution of renal gluconeogenesis.


Subject(s)
Adiponectin , Gluconeogenesis , Kidney , Animals , Male , Mice , Adiponectin/genetics , Adiponectin/metabolism , Gluconeogenesis/genetics , Gluconeogenesis/physiology , Glucose/metabolism , Kidney/metabolism , Liver/metabolism , Mice, Knockout , Pyruvic Acid/metabolism
4.
Front Endocrinol (Lausanne) ; 11: 569250, 2020.
Article in English | MEDLINE | ID: mdl-33133017

ABSTRACT

Metabolic dysfunction is intertwined with the pathophysiology of both diabetes and cardiovascular disease. Recently, one particular lipid class has been shown to influence the development and sustainment of these diseases: ceramides. As a subtype of sphingolipids, these species are particularly central to many sphingolipid pathways. Increased levels of ceramides are known to correlate with impaired cardiovascular and metabolic health. Furthermore, the interaction between ceramides and adipokines, most notably adiponectin and leptin, appears to play a role in the pathophysiology of these conditions. Adiponectin appears to counteract the detrimental effects of elevated ceramides, largely through activation of the ceramidase activity of its receptors. Elevated ceramides appear to worsen leptin resistance, which is an important phenomenon in the pathophysiology of obesity and metabolic syndrome.


Subject(s)
Adipokines/metabolism , Cardiovascular Diseases/metabolism , Ceramides/metabolism , Diabetes Mellitus/metabolism , Insulin Resistance/physiology , Animals , Cardiovascular Diseases/diagnosis , Ceramides/adverse effects , Diabetes Mellitus/diagnosis , Humans , Metabolic Syndrome/diagnosis , Metabolic Syndrome/metabolism , Obesity/metabolism , Obesity/pathology
5.
Cell Rep ; 19(3): 655-667, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28423326

ABSTRACT

Translational profiling methodologies enable the systematic characterization of cell types in complex tissues, such as the mammalian brain, where neuronal isolation is exceptionally difficult. Here, we report a versatile strategy for profiling CNS cell types in a spatiotemporally restricted fashion by engineering a Cre-dependent adeno-associated virus expressing an EGFP-tagged ribosomal protein (AAV-FLEX-EGFPL10a) to access translating mRNAs by translating ribosome affinity purification (TRAP). We demonstrate the utility of this AAV to target a variety of genetically and anatomically defined neural populations expressing Cre recombinase and illustrate the ability of this viral TRAP (vTRAP) approach to recapitulate the molecular profiles obtained by bacTRAP in corticothalamic neurons across multiple serotypes. Furthermore, spatially restricting adeno-associated virus (AAV) injections enabled the elucidation of regional differences in gene expression within this cell type. Altogether, these results establish the broad applicability of the vTRAP strategy for the molecular dissection of any CNS or peripheral cell type that can be engineered to express Cre.


Subject(s)
Chromatography, Affinity/methods , Protein Biosynthesis , Ribosomes/metabolism , Viruses/metabolism , Animals , Biomarkers/metabolism , Dependovirus/metabolism , Female , Gene Expression Regulation , Green Fluorescent Proteins/metabolism , Hypothalamic Hormones/metabolism , Hypothalamus/metabolism , Male , Melanins/metabolism , Mice , Neurons/metabolism , Pituitary Hormones/metabolism , Reproducibility of Results , Serotyping
SELECTION OF CITATIONS
SEARCH DETAIL