Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Crit Rev Food Sci Nutr ; 61(16): 2659-2690, 2021.
Article in English | MEDLINE | ID: mdl-32590905

ABSTRACT

The highly demanding conditions of industrial processes may lower the stability and affect the activity of enzymes used as biocatalysts. Enzyme immobilization emerged as an approach to promote stabilization and easy removal of enzymes for their reusability. The aim of this review is to go through the principal immobilization strategies addressed to achieve optimal industrial processes with special care on those reported for two types of enzymes: ß-galactosidases and fructosyltransferases. The main methods used to immobilize these two enzymes are adsorption, entrapment, covalent coupling and cross-linking or aggregation (no support is used), all of them having pros and cons. Regarding the support, it should be cost-effective, assure the reusability and an easy recovery of the enzyme, increasing its stability and durability. The discussion provided showed that the type of enzyme, its origin, its purity, together with the type of immobilization method and the support will affect the performance during the enzymatic synthesis. Enzymes' immobilization involves interdisciplinary knowledge including enzymology, nanotechnology, molecular dynamics, cellular physiology and process design. The increasing availability of facilities has opened a variety of possibilities to define strategies to optimize the activity and re-usability of ß-galactosidases and fructosyltransferases, but there is still great place for innovative developments.


Subject(s)
Enzymes, Immobilized , Hexosyltransferases , Technology , beta-Galactosidase
2.
Plants (Basel) ; 13(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38592833

ABSTRACT

Pesticide overuse in agricultural systems has resulted in the development of pest resistance, the impoverishment of soil microbiota, water pollution, and several human health issues. Nonetheless, farmers still depend heavily on these agrochemicals for economically viable production, given the high frequency at which crops are affected by pests. Phytopathogenic insects are considered the most destructive pests on crops. Botanical pesticides have gained attention as potential biopesticides and complements to traditional pesticides, owing to their biodegradability and low toxicity. Plant-based extracts are abundant in a wide variety of bioactive compounds, such as flavonoids, a class of polyphenols that have been extensively studied for this purpose because of their involvement in plant defense responses. The present review offers a comprehensive review of current research on the potential of flavonoids as insecticides for crop protection, addressing the modes and possible mechanisms of action underlying their bioactivity. The structure-activity relationship is also discussed. It also addresses challenges associated with their application in pest and disease management and suggests alternatives to overcome these issues.

3.
Foods ; 12(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37893727

ABSTRACT

Citrus consumption translates into large amounts of residue, the disposal of which is associated with environmental issues and high costs. Current trends in citrus waste focus on the extraction of highly valued bioactive compounds via single-compound extraction. There is a lack of knowledge on how these methodologies can be introduced into extraction schemes of bioactive compounds, maximizing the residue potential and reducing its amount. The present work aimed to address this issue by designing a consecutive extraction of pectin and hesperidin from orange peel waste. A novel method for extraction and precipitation of hesperidin with an eco-friendly approach is also presented. After neutral pretreatment, pectin extraction was conducted under acidic conditions, followed by hesperidin extraction with a drastic pH change. Pectin had a high AUA content (66.20 ± 1.25%), meeting the criteria for use in the food industry. The best-tested conditions for hesperidin extraction (30 min, 70 °C, 1:10 (w/v)) provided a yield of 1% and a purity of 84%. The designed extraction scheme shows the potential of citrus waste as a source of bioactive compounds of good quality and high interest in the food industry while following the principles of green chemistry and circular economy.

SELECTION OF CITATIONS
SEARCH DETAIL