Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Dev Med Child Neurol ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38491830

ABSTRACT

AIM: To facilitate multisite studies and international clinical research, this study aimed to identify consensus-based, standardized common data elements (CDEs) for arthrogryposis multiplex congenita (AMC). METHOD: A mixed-methods study comprising of several focus group discussions and three rounds of modified Delphi surveys to achieve consensus using two tiered-rating scales were conducted. RESULTS: Overall, 45 clinical experts and adults with lived experience (including 12 members of an AMC consortium) participated in this study from 11 countries in North America, Europe, and Australia. The CDEs include 321 data elements and 19 standardized measures across various domains from fetal development to adulthood. Data elements pertaining to AMC phenotypic traits were mapped according to the Human Phenotype Ontology. A universal governance structure, local operating protocols, and sustainability plans were identified as the main facilitators, whereas limited capacity for data sharing and the need for a federated informatics infrastructure were the main barriers. INTERPRETATION: Collection of systematic data on AMC using CDEs will allow investigations on etiological pathways, describe epidemiological profile, and establish genotype-phenotype correlations in a standardized manner. The proposed CDEs will facilitate international multidisciplinary collaborations by improving large-scale studies and opportunities for data sharing, knowledge translation, and dissemination.

2.
Prenat Diagn ; 43(6): 798-805, 2023 06.
Article in English | MEDLINE | ID: mdl-36588183

ABSTRACT

Arthrogryposis, also termed arthrogryposis multiplex congenita, is a descriptive term for conditions with multiple congenital contractures (MCC). The etiology is extremely heterogeneous. More than 400 specific disorders have been identified so far, which may lead to or are associated with MCC and/or fetal hypo- and akinesia as a clinical sign. With improved sensitivity of prenatal ultrasound and expanding prenatal diagnostic options, clinicians are tasked with providing early detection in order to counsel the prospective parents regarding further prenatal diagnostic as well as management options. We summarize the most important knowledge to raise awareness for early detection in pregnancy. We review essential points for counseling when MCC is detected in order to provide answers to common questions, which, however, cannot replace interdisciplinary expert opinion in the individual case.


Subject(s)
Arthrogryposis , Pregnancy , Female , Humans , Arthrogryposis/diagnostic imaging , Prospective Studies , Ultrasonography, Prenatal , Prenatal Care , Parents
3.
Am J Med Genet C Semin Med Genet ; 190(2): 231-242, 2022 06.
Article in English | MEDLINE | ID: mdl-35872606

ABSTRACT

Technological advances in both genome sequencing and prenatal imaging are increasing our ability to accurately recognize and diagnose Mendelian conditions prenatally. Phenotype-driven early genetic diagnosis of fetal genetic disease can help to strategize treatment options and clinical preventive measures during the perinatal period, to plan in utero therapies, and to inform parental decision-making. Fetal phenotypes of genetic diseases are often unique and at present are not well understood; more comprehensive knowledge about prenatal phenotypes and computational resources have an enormous potential to improve diagnostics and translational research. The Human Phenotype Ontology (HPO) has been widely used to support diagnostics and translational research in human genetics. To better support prenatal usage, the HPO consortium conducted a series of workshops with a group of domain experts in a variety of medical specialties, diagnostic techniques, as well as diseases and phenotypes related to prenatal medicine, including perinatal pathology, musculoskeletal anomalies, neurology, medical genetics, hydrops fetalis, craniofacial malformations, cardiology, neonatal-perinatal medicine, fetal medicine, placental pathology, prenatal imaging, and bioinformatics. We expanded the representation of prenatal phenotypes in HPO by adding 95 new phenotype terms under the Abnormality of prenatal development or birth (HP:0001197) grouping term, and revised definitions, synonyms, and disease annotations for most of the 152 terms that existed before the beginning of this effort. The expansion of prenatal phenotypes in HPO will support phenotype-driven prenatal exome and genome sequencing for precision genetic diagnostics of rare diseases to support prenatal care.


Subject(s)
Computational Biology , Placenta , Infant, Newborn , Humans , Female , Pregnancy , Computational Biology/methods , Phenotype , Rare Diseases , Exome Sequencing
4.
Hum Mol Genet ; 28(5): 778-795, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30388224

ABSTRACT

Mutations in KIF14 have previously been associated with either severe, isolated or syndromic microcephaly with renal hypodysplasia (RHD). Syndromic microcephaly-RHD was strongly reminiscent of clinical ciliopathies, relating to defects of the primary cilium, a signalling organelle present on the surface of many quiescent cells. KIF14 encodes a mitotic kinesin, which plays a key role at the midbody during cytokinesis and has not previously been shown to be involved in cilia-related functions. Here, we analysed four families with fetuses presenting with the syndromic form and harbouring biallelic variants in KIF14. Our functional analyses showed that the identified variants severely impact the activity of KIF14 and likely correspond to loss-of-function mutations. Analysis in human fetal tissues further revealed the accumulation of KIF14-positive midbody remnants in the lumen of ureteric bud tips indicating a shared function of KIF14 during brain and kidney development. Subsequently, analysis of a kif14 mutant zebrafish line showed a conserved role for this mitotic kinesin. Interestingly, ciliopathy-associated phenotypes were also present in mutant embryos, supporting a potential direct or indirect role for KIF14 at cilia. However, our in vitro and in vivo analyses did not provide evidence of a direct role for KIF14 in ciliogenesis and suggested that loss of kif14 causes ciliopathy-like phenotypes through an accumulation of mitotic cells in ciliated tissues. Altogether, our results demonstrate that KIF14 mutations result in a severe syndrome associating microcephaly and RHD through its conserved function in cytokinesis during kidney and brain development.


Subject(s)
Congenital Abnormalities/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Kidney Diseases/congenital , Kidney/abnormalities , Kinesins/genetics , Loss of Function Mutation , Microcephaly/genetics , Oncogene Proteins/genetics , Animals , Congenital Abnormalities/metabolism , Cytokinesis/genetics , Disease Models, Animal , Female , Fluorescent Antibody Technique , Genes, Lethal , Genetic Association Studies/methods , Genetic Loci , Humans , Kidney/metabolism , Kidney Diseases/genetics , Kidney Diseases/metabolism , Kinesins/chemistry , Kinesins/metabolism , Male , Microcephaly/metabolism , Microcephaly/pathology , Oncogene Proteins/chemistry , Oncogene Proteins/metabolism , Pedigree , Phenotype , Structure-Activity Relationship , Zebrafish
5.
Hum Genet ; 140(8): 1229-1239, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34159400

ABSTRACT

The extensive clinical and genetic heterogeneity of congenital limb malformation calls for comprehensive genome-wide analysis of genetic variation. Genome sequencing (GS) has the potential to identify all genetic variants. Here we aim to determine the diagnostic potential of GS as a comprehensive one-test-for-all strategy in a cohort of undiagnosed patients with congenital limb malformations. We collected 69 cases (64 trios, 1 duo, 5 singletons) with congenital limb malformations with no molecular diagnosis after standard clinical genetic testing and performed genome sequencing. We also developed a framework to identify potential noncoding pathogenic variants. We identified likely pathogenic/disease-associated variants in 12 cases (17.4%) including four in known disease genes, and one repeat expansion in HOXD13. In three unrelated cases with ectrodactyly, we identified likely pathogenic variants in UBA2, establishing it as a novel disease gene. In addition, we found two complex structural variants (3%). We also identified likely causative variants in three novel high confidence candidate genes. We were not able to identify any noncoding variants. GS is a powerful strategy to identify all types of genomic variants associated with congenital limb malformation, including repeat expansions and complex structural variants missed by standard diagnostic approaches. In this cohort, no causative noncoding SNVs could be identified.


Subject(s)
Genetic Heterogeneity , Homeodomain Proteins/genetics , Limb Deformities, Congenital/genetics , Mutation , Transcription Factors/genetics , Ubiquitin-Activating Enzymes/genetics , Base Sequence , Cohort Studies , DNA Copy Number Variations , Gene Expression , Genetic Testing , Humans , Infant , Limb Deformities, Congenital/metabolism , Limb Deformities, Congenital/pathology , Male , Pedigree , Transcription Factors/deficiency , Ubiquitin-Activating Enzymes/deficiency , Whole Genome Sequencing
6.
Am J Med Genet A ; 185(12): 3728-3739, 2021 12.
Article in English | MEDLINE | ID: mdl-34346154

ABSTRACT

Kinesin super family (KIF) genes encode motor kinesins, a family of evolutionary conserved proteins, involved in intracellular trafficking of various cargoes. These proteins are critical for various physiological processes including neuron function and survival, ciliary function and ciliogenesis, and cell-cycle progression. Recent evidence suggests that alterations in motor kinesin genes can lead to a variety of human diseases, including monogenic disorders. Neuropathies, impaired higher brain functions, structural brain abnormalities and multiple congenital anomalies (i.e., renal, urogenital, and limb anomalies) can result from pathogenic variants in many KIF genes. We expand the phenotype associated with KIF4A variants from developmental delay and intellectual disability with or without epilepsy to a congenital anomaly phenotype with hydrocephalus and various brain anomalies at the more severe end of phenotypic manifestations. Additional anomalies of the kidneys and urinary tract, congenital lymphedema, eye, and dental anomalies seem to be variably associated and overlap with clinical signs observed in other kinesinopathies. Caution still applies to missense variants, but hopefully, future work will further establish genotype-phenotype correlations in a larger number of patients and functional studies may give further insights into the complex function of KIF4A.


Subject(s)
Abnormalities, Multiple/genetics , Brain/metabolism , Kinesins/genetics , Urogenital Abnormalities/genetics , Vesico-Ureteral Reflux/genetics , Abnormalities, Multiple/pathology , Brain/abnormalities , Brain/pathology , Epilepsy/genetics , Epilepsy/pathology , Female , Genetic Association Studies , Humans , Intellectual Disability/genetics , Intellectual Disability/pathology , Male , Mutation, Missense/genetics , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/pathology , Neurons/metabolism , Neurons/pathology , Phenotype , Urogenital Abnormalities/pathology , Vesico-Ureteral Reflux/pathology
7.
J Med Genet ; 57(12): 797-807, 2020 12.
Article in English | MEDLINE | ID: mdl-32430361

ABSTRACT

Motor kinesins are a family of evolutionary conserved proteins involved in intracellular trafficking of various cargoes, first described in the context of axonal transport. They were discovered to have a key importance in cell-cycle dynamics and progression, including chromosomal condensation and alignment, spindle formation and cytokinesis, as well as ciliogenesis and cilia function. Recent evidence suggests that impairment of kinesins is associated with a variety of human diseases consistent with their functions and evolutionary conservation. Through the advent of gene identification using genome-wide sequencing approaches, their role in monogenic disorders now emerges, particularly for birth defects, in isolated as well as multiple congenital anomalies. We can observe recurrent phenotypical themes such as microcephaly, certain brain anomalies, and anomalies of the kidney and urinary tract, as well as syndromic phenotypes reminiscent of ciliopathies. Together with the molecular and functional data, we suggest understanding these 'kinesinopathies' as a recognisable entity with potential value for research approaches and clinical care.


Subject(s)
Ciliopathies/genetics , Congenital Abnormalities/genetics , Genetic Predisposition to Disease , Kinesins/genetics , Brain/abnormalities , Brain/pathology , Cilia/genetics , Cilia/pathology , Ciliopathies/pathology , Congenital Abnormalities/pathology , Humans , Kidney/abnormalities , Kidney/pathology , Microcephaly/genetics , Microcephaly/pathology , Multigene Family/genetics , Phenotype , Urinary Tract/abnormalities , Urinary Tract/pathology
8.
BMC Pediatr ; 21(1): 387, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34488686

ABSTRACT

BACKGROUND: The use of genome-wide sequencing in pediatric medicine and research is growing exponentially. While this has many potential benefits, the normative and empirical literature has highlighted various ethical issues. There have not been, however, any systematic reviews of these issues. The aim of this systematic review is to determine systematically the spectrum of ethical issues that is raised for stakeholders in in pediatric genome-wide sequencing. METHODS: A systematic review in PubMed and Google Books (publications in English or German between 2004 and 2021) was conducted. Further references were identified via reference screening. Data were analyzed and synthesized using qualitative content analysis. Ethical issues were defined as arising when a relevant normative principle is not adequately considered or when two principles come into conflict. RESULTS: Our literature search retrieved 3175 publications of which 143 were included in the analysis. Together these mentioned 106 ethical issues in pediatric genome-wide sequencing, categorized into five themes along the pediatric genome-wide sequencing lifecycle. Most ethical issues identified in relation to genome-wide sequencing typically reflect ethical issues that arise in general genetic testing, but they are often amplified by the increased quantity of data obtained, and associated uncertainties. The most frequently discussed ethical aspects concern the issue of unsolicited findings. CONCLUSION: Concentration of the debate on unsolicited findings risks overlooking other ethical challenges. An overarching difficulty presents the terminological confusion: both with regard to both the test procedure/ the scope of analysis, as well as with the topic of unsolicited findings. It is important that the genetics and ethics communities together with other medical professions involved work jointly on specific case related guidelines to grant the maximum benefit for the care of the children, while preventing patient harm and disproportionate overload of clinicians and the healthcare system by the wealth of available options and economic incentives to increase testing.


Subject(s)
Delivery of Health Care , Genetic Testing , Child , Humans
9.
J Perinat Med ; 49(8): 1003-1010, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34214293

ABSTRACT

New genomic laboratory technology namely microarrays and high throughput sequencing (HTS) as well as a steady progress in sonographic image capture and processing have changed the practice of prenatal diagnosis during the last decade fundamentally. Pregnancies at high risk for common trisomies are reliably identified by non-invasive prenatal testing (NIPT) and expert sonography has greatly improved the assessment of the fetal phenotype. Preconceptional comprehensive carrier screening using HTS is available for all parents, if they should wish to do so. A definite fetal diagnosis, however, will still require invasive testing for most conditions. Chromosomal microarrays (CMA) have greatly enhanced the resolution in the detection of chromosome anomalies and other causal copy number variations (CNV). Gene panel or whole exome sequencing (WES) is becoming the routine follow up of many anomalies detected by ultrasound after CNVs have been excluded. The benefits and limitations of the various screening as well as diagnostic options are perceived as complex by many who find it challenging to cope with the need for immediate choices. The communication of facts to ensure an informed decision making is obviously a growing challenge with the advent of the new genomic testing options. This contribution provides an overview of the current practice and policies in Switzerland.


Subject(s)
Genomics/trends , Noninvasive Prenatal Testing/trends , Female , Genetic Carrier Screening , Genomics/methods , Humans , Noninvasive Prenatal Testing/methods , Pregnancy , Switzerland , Ultrasonography, Prenatal
10.
Am J Med Genet C Semin Med Genet ; 181(3): 327-336, 2019 09.
Article in English | MEDLINE | ID: mdl-31318155

ABSTRACT

Antenatal identification of fetuses with multiple congenital contractures or arthrogryposis multiplex congenita (AMC) may be challenging. The first clinical sign is often reduced fetal movement and/or contractures, as seen on prenatal ultrasounds. This can be apparent at any point, from early to late pregnancy, may range from mild to severe involvement, with or without associated other structural anomalies. Possible etiologies and their prognosis need to be interpreted with respect to developmental timing. The etiology of AMC is highly heterogeneous and making the specific diagnosis will guide prognosis, counseling and prenatal and perinatal management. Current ultrasound practice identifies only approximately 25% of individuals with arthrogryposis prenatally before 24 weeks of pregnancy in a general obstetrics care population. There are currently no studies and guidelines that address the question of when and how to assess for fetal contractures and movements during pregnancy. The failure to identify fetuses with arthrogryposis before 24 weeks of pregnancy means that physicians and families are denied reproductive options and interventions that may improve outcome. We review current practice and recommend adjusting the current prenatal imaging and genetic diagnostic strategies to achieve early prenatal detection and etiologic diagnosis. We suggest exploring options for in utero therapy to increase fetal movement for ongoing pregnancies.


Subject(s)
Arthrogryposis/diagnosis , Fetus/abnormalities , Animals , Female , Humans , Pregnancy , Prenatal Care , Prognosis
11.
Dev Med Child Neurol ; 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38590274

ABSTRACT

OBJECTIF: Afin de faciliter les études multisites et la recherche clinique d'envergure internationale, cette étude a pour but d'identifier des éléments de données communs (EDCs) normalisés et fondés sur un consensus pour l'arthrogrypose multiple congénitale (AMC). MÉTHODE: Une étude à méthodes mixtes comprenant plusieurs groupes de discussion et trois séries d'enquêtes Delphi modifiées pour parvenir à un consensus ont été menées. RÉSULTATS: Dans l'ensemble, 45 experts cliniques ainsi qu'adultes ayant une expérience vécue (dont 12 membres d'un consortium d'AMC) ont participé à cette étude à travers 11 pays en Amérique du Nord, Europe et Australie. Les EDCs comprennent 321 éléments de données et 19 mesures standardisées dans divers domaines, du développement du fœtus à l'âge adulte. Les éléments de données relatifs aux traits phénotypiques de l'AMC ont été cartographiés conformément à l'ontologie du phénotype humain (HPO). Une structure de gouvernance universelle, des protocoles de fonctionnement et des plans de développement durable ont été identifiés comme les principaux facilitateurs considérant que la capacité limitée de partage des données et la nécessité d'une infrastructure informatique fédérée étaient les principaux obstacles. INTERPRÉTATION: Une collecte de données systématiques sur l'AMC à l'aide d'EDCs permettra d'étudier sur les voies étiologiques, décrire le profil épidémiologique, et établir des corrélations génotype­phénotype de manière standardisée. Les EDCs proposés faciliteront les collaborations internationales multidisciplinaires en améliorant à grande échelle les études multicentriques, les possibilités de partage des données, ainsi que le transfert et la diffusion des connaissances.

12.
Dev Med Child Neurol ; 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581247

ABSTRACT

OBJETIVO: Para facilitar los estudios multicéntricos y la investigación clínica internacional, este estudio pretende identificar de forma consensuada los elementos de datos estandarizados para la artrogriposis múltiple congénita (AMC). MÉTODO: Estudio de métodos mixtos de grupos de discusión y tres rondas de encuestas Delphi modificadas para llegar a un consenso utilizando dos escalas de clasificación por niveles. RESULTADOS: En total, 45 expertos clínicos y adultos con experiencia vivida (incluidos 12 miembros de un consorcio de AMC) participaron en este estudio procedentes de 11 países: Norteamérica, Europa y Australia. Los CDEs incluyen 321 elementos de datos y 19 medidas estandarizadas en varios dominios desde el desarrollo fetal hasta la edad adulta. Los elementos de datos relativos a los rasgos fenotípicos del CDEs se mapearon de acuerdo con la Ontología de Fenotipos Humanos. Se identificaron como principales facilitadores la estructura de gobernanza universal, protocolos operados de forma local y los planes de sostenibilidad, mientras que los principales obstáculos observados son la capacidad limitada para compartir datos y la necesidad de una infraestructura informática federada. INTERPRETACIÓN: La recopilación de datos sistemáticos sobre la AMC mediante CDEs permitirá investigar las vías etiológicas, describir el perfil epidemiológico y establecer correlaciones genotipo­fenotipo de forma estandarizada. Los CDEs propuestos facilitarán las colaboraciones multidisciplinares internacionales mejorando los estudios a gran escala y las oportunidades para compartir datos, translación de conocimiento y difusión.

14.
Hum Mutat ; 37(4): 359-63, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26820108

ABSTRACT

Strømme syndrome was first described by Strømme et al. (1993) in siblings presenting with "apple peel" type intestinal atresia, ocular anomalies and microcephaly. The etiology remains unknown to date. We describe the long-term clinical follow-up data for the original pair of siblings as well as two previously unreported siblings with a severe phenotype overlapping that of the Strømme syndrome including fetal autopsy results. Using family-based whole-exome sequencing, we identified truncating mutations in the centrosome gene CENPF in the two nonconsanguineous Caucasian sibling pairs. Compound heterozygous inheritance was confirmed in both families. Recently, mutations in this gene were shown to cause a fetal lethal phenotype, the phenotype and functional data being compatible with a human ciliopathy [Waters et al., 2015]. We show for the first time that Strømme syndrome is an autosomal-recessive disease caused by mutations in CENPF that can result in a wide phenotypic spectrum.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , Ciliopathies/diagnosis , Ciliopathies/genetics , Eye Abnormalities/diagnosis , Eye Abnormalities/genetics , Intestinal Atresia/diagnosis , Intestinal Atresia/genetics , Microcephaly/diagnosis , Microcephaly/genetics , Microfilament Proteins/genetics , Mutation , Adult , DNA Mutational Analysis , Facies , Female , Follow-Up Studies , Genes, Recessive , Genetic Association Studies , Heterozygote , Humans , Male , Pedigree , Phenotype , Siblings , Young Adult
15.
Prenat Diagn ; 35(10): 1005-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25046514

ABSTRACT

Massively parallel sequencing has revolutionized our understanding of Mendelian disorders, and many novel genes have been discovered to cause disease phenotypes when mutant. At the same time, next-generation sequencing approaches have enabled non-invasive prenatal testing of free fetal DNA in maternal blood. However, little attention has been paid to using whole exome and genome sequencing strategies for gene identification in fetal disorders that are lethal in utero, because they can appear to be sporadic and Mendelian inheritance may be missed. We present challenges and advantages of applying next-generation sequencing approaches to gene discovery in fetal malformation phenotypes and review recent successful discovery approaches. We discuss the implication and significance of recessive inheritance and cross-species phenotyping in fetal lethal conditions. Whole exome sequencing can be used in individual families with undiagnosed lethal congenital anomaly syndromes to discover causal mutations, provided that prior to data analysis, the fetal phenotype can be correlated to a particular developmental pathway in embryogenesis. Cross-species phenotyping allows providing further evidence for causality of discovered variants in genes involved in those extremely rare phenotypes and will increase our knowledge about normal and abnormal human developmental processes. Ultimately, families will benefit from the option of early prenatal diagnosis.


Subject(s)
Exome , Genes, Lethal , Genetic Diseases, Inborn/genetics , Animals , Genes, Recessive , Genetic Association Studies , Germ-Line Mutation , Humans , Phenotype
17.
Am J Med Genet A ; 164A(8): 2003-12, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24891046

ABSTRACT

The phenotype of recurrent ∼600 kb microdeletion and microduplication on proximal 16p11.2 is characterized by a spectrum of neurodevelopmental impairments including developmental delay and intellectual disability, epilepsy, autism and psychiatric disorders which are all subject to incomplete penetrance and variable expressivity. A variety of brain MRI abnormalities were reported in patients with 16p11.2 rearrangements, but no systematic correlation has been studied among patients with similar brain anomalies, their neurodevelopmental and clinical phenotypes. We present three patients with the proximal 16p11.2 microduplication exhibiting significant developmental delay, anxiety disorder and other variable clinical features. Our patients have abnormal brain MRI findings of cerebral T2 hyperintense foci (3/3) and ventriculomegaly (2/3). The neuroradiological or neurological findings in two cases prompted an extensive diagnostic work-up. One patient has exhibited neurological regression and progressive vision impairment and was diagnosed with juvenile neuronal ceroid-lipofuscinosis. We compare the clinical course and phenotype of these patients in regard to the clinical significance of the cerebral lesions and the need for MRI surveillance. We conclude that in all three patients the lesions were not progressive, did not show any sign of malignant transformation and could not be correlated to specific clinical features. We discuss potential etiologic mechanisms that may include overexpression of genes within the duplicated region involved in control of cell proliferation and complex molecular mechanisms such as the MAPK/ERK pathway. Systematic studies in larger cohorts are needed to confirm our observation and to establish the prevalence and clinical significance of these neuroanatomical abnormalities in patients with 16p11.2 duplications.


Subject(s)
Brain/pathology , Chromosome Duplication , Chromosomes, Human, Pair 16 , Developmental Disabilities/diagnosis , Developmental Disabilities/genetics , Magnetic Resonance Imaging , Phenotype , Adolescent , Child , Comparative Genomic Hybridization , Facies , Female , Humans , In Situ Hybridization, Fluorescence , Male , Polymorphism, Single Nucleotide
18.
Am J Med Genet A ; 164A(5): 1118-26, 2014 May.
Article in English | MEDLINE | ID: mdl-24458548

ABSTRACT

The typical chromosome 16p11.2 rearrangements are estimated to occur at a frequency of approximately 0.6% of all samples tested clinically and have been identified as a major cause of autism spectrum disorders, developmental delay, behavioral abnormalities, and seizures. Careful examination of patients with these rearrangements revealed association with abnormal head size, obesity, dysmorphism, and congenital abnormalities. In this report, we extend this list of phenotypic abnormalities to include scoliosis and vertebral anomalies. We present detailed characterization of phenotypic and radiological data of 10 new patients, nine with the 16p11.2 deletion and one with the duplication within the coordinates chr16:29,366,195 and 30,306,956 (hg19) with a minimal size of 555 kb. We discuss the phenotypical and radiological findings in our patients and review 5 previously reported patients with 16p11.2 rearrangement and similar skeletal abnormalities. Our data suggest that patients with the recurrent 16p11.2 rearrangement have increased incidence of scoliosis and vertebral anomalies. However, additional studies are required to confirm this observation and to establish the incidence of these anomalies. We discuss the potential implications of our findings on the diagnosis, surveillance and genetic counseling of patients with 16p11.2 rearrangement.


Subject(s)
Scoliosis/diagnosis , Scoliosis/genetics , Spine/abnormalities , Adolescent , Child , Child, Preschool , Chromosome Aberrations , Chromosomes, Human, Pair 16 , Diagnostic Imaging , Facies , Female , Humans , In Situ Hybridization, Fluorescence , Infant , Male , Oligonucleotide Array Sequence Analysis , Phenotype
19.
J Pers Med ; 14(6)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38929869

ABSTRACT

Large-scale next-generation sequencing (NGS) germline testing is technically feasible today, but variant interpretation represents a major bottleneck in analysis workflows. This includes extensive variant prioritization, annotation, and time-consuming evidence curation. The scale of the interpretation problem is massive, and variants of uncertain significance (VUSs) are a challenge to personalized medicine. This challenge is further compounded by the complexity and heterogeneity of the standards used to describe genetic variants and the associated phenotypes when searching for relevant information to support clinical decision making. To address this, all five Swiss academic institutions for Medical Genetics joined forces with the Swiss Institute of Bioinformatics (SIB) to create SwissGenVar as a user-friendly nationwide repository and sharing platform for genetic variant data generated during routine diagnostic procedures and research sequencing projects. Its aim is to provide a protected environment for expert evidence sharing about individual variants to harmonize and upscale their significance interpretation at the clinical grade according to international standards. To corroborate the clinical assessment, the variant-related data will be combined with consented high-quality clinical information. Broader visibility will be achieved by interfacing with international databases, thus supporting global initiatives in personalized healthcare.

20.
Prenat Diagn ; 33(1): 61-74, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23296716

ABSTRACT

OBJECTIVE: The aim of this study is to assess the rate of prenatal detection of multiple congenital contractures, to identify reasons for the failure of prenatal diagnosis and to propose the first guidelines to improve prenatal diagnosis. METHOD: We evaluated records on 107 individuals recognized at birth to have Amyoplasia. We reviewed the literature on the onset and development of fetal activity, antenatal clinical signs in fetal movement disorders, prenatal studies of fetal movement and contractures by ultrasound and magnetic resonance imaging (MRI) and existing guidelines. RESULT: In 73.8%, the diagnosis was missed prenatally. Correct diagnosis was achieved by the identification of bilateral clubfeet on ultrasound or because mothers perceived reduced fetal movement. Ultrasound would be able to visualize contractures, joint positioning, the quality of fetal movements, lung size, muscle tissue, and bone growth in the first or early second trimester. MRI results are promising. Guidelines for assessing early fetal movement do not exist. CONCLUSION: Prenatal detection rate of multiple congenital contractures is appalling. Failure of diagnosis precludes further etiologic and diagnostic workup and deprives families of making informed pregnancy choices. Standards for prenatal diagnosis are lacking, but on the basis of current knowledge and expert opinion, we propose the first guidelines for a prenatal diagnostic strategy, discuss future directions and the need for multicentric studies.


Subject(s)
Contracture/congenital , Contracture/diagnosis , Practice Guidelines as Topic , Prenatal Diagnosis/methods , Ultrasonography, Prenatal , Arthrogryposis/diagnosis , Arthrogryposis/diagnostic imaging , Contracture/diagnostic imaging , False Negative Reactions , Female , Fetal Movement , Humans , Infant, Newborn , MEDLINE , Magnetic Resonance Imaging , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL