Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Article in English | MEDLINE | ID: mdl-34921114

ABSTRACT

N6-methyladenosine (m6A) deposition on messenger RNA (mRNA) controls embryonic stem cell (ESC) fate by regulating the mRNA stabilities of pluripotency and lineage transcription factors (TFs) [P. J. Batista et al., Cell Stem Cell 15, 707-719 (2014); Y. Wang et al., Nat. Cell Biol. 16, 191-198 (2014); and S. Geula et al., Science 347, 1002-1006 (2015)]. If the mRNAs of these two TF groups become stabilized, it remains unclear how the pluripotency or lineage commitment decision is implemented. We performed noninvasive quantification of Nanog and Oct4 TF protein levels in reporter ESCs to define cell-state dynamics at single-cell resolution. Long-term single-cell tracking shows that immediate m6A depletion by Mettl3 knock-down in serum/leukemia inhibitory factor supports both pluripotency maintenance and its departure. This is mediated by differential and opposing signaling pathways. Increased FGF5 mRNA stability activates pErk, leading to Nanog down-regulation. FGF5-mediated coactivation of pAkt reenforces Nanog expression. In formative stem cells poised toward differentiation, m6A depletion activates both pErk and pAkt, increasing the propensity for mesendodermal lineage induction. Stable m6A depletion by Mettl3 knock-out also promotes pErk activation. Higher pErk counteracts the pluripotency exit delay exhibited by stably m6A-depleted cells upon differentiation. At single-cell resolution, we illustrate that decreasing m6A abundances activates pErk and pAkt-signaling, regulating pluripotency departure.


Subject(s)
Adenosine/analogs & derivatives , Embryonic Stem Cells/physiology , MAP Kinase Signaling System , Adenosine/metabolism , Animals , Cell Line , Germ Layers/cytology , Mice
2.
Nature ; 535(7611): 299-302, 2016 07 14.
Article in English | MEDLINE | ID: mdl-27411635

ABSTRACT

The mechanisms underlying haematopoietic lineage decisions remain disputed. Lineage-affiliated transcription factors with the capacity for lineage reprogramming, positive auto-regulation and mutual inhibition have been described as being expressed in uncommitted cell populations. This led to the assumption that lineage choice is cell-intrinsically initiated and determined by stochastic switches of randomly fluctuating cross-antagonistic transcription factors. However, this hypothesis was developed on the basis of RNA expression data from snapshot and/or population-averaged analyses. Alternative models of lineage choice therefore cannot be excluded. Here we use novel reporter mouse lines and live imaging for continuous single-cell long-term quantification of the transcription factors GATA1 and PU.1 (also known as SPI1). We analyse individual haematopoietic stem cells throughout differentiation into megakaryocytic-erythroid and granulocytic-monocytic lineages. The observed expression dynamics are incompatible with the assumption that stochastic switching between PU.1 and GATA1 precedes and initiates megakaryocytic-erythroid versus granulocytic-monocytic lineage decision-making. Rather, our findings suggest that these transcription factors are only executing and reinforcing lineage choice once made. These results challenge the current prevailing model of early myeloid lineage choice.


Subject(s)
Cell Differentiation , Cell Lineage , GATA1 Transcription Factor/metabolism , Myeloid Cells/cytology , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism , Animals , Erythrocytes/cytology , Feedback, Physiological , Female , Genes, Reporter , Granulocytes/cytology , Hematopoiesis , Hematopoietic Stem Cells/cytology , Male , Megakaryocytes/cytology , Mice , Models, Biological , Monocytes/cytology , Reproducibility of Results , Single-Cell Analysis , Stochastic Processes
3.
Nat Methods ; 14(1): 18-22, 2016 12 29.
Article in English | MEDLINE | ID: mdl-28032624

ABSTRACT

Post-transcriptional RNA modifications were discovered several decades ago, but the reversible nature of RNA modifications has only recently been discovered. Owing to technological advances, knowledge of epitranscriptomic marks and their writers, readers and erasers has recently advanced tremendously. Here we focus on the roles of the dynamic methylation and demethylation of internal adenosines in mRNA in germ cells and pluripotent stem cells.


Subject(s)
Epigenesis, Genetic/genetics , Meiosis/genetics , Pluripotent Stem Cells/metabolism , RNA/chemistry , RNA/genetics , Animals , Humans , Pluripotent Stem Cells/cytology
4.
Mol Ther ; 19(4): 782-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21285961

ABSTRACT

Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by gene transfer of reprogramming transcription factors. Expression levels of these factors strongly influence the overall efficacy to form iPSC colonies, but additional contribution of stochastic cell-intrinsic factors has been proposed. Here, we present engineered color-coded lentiviral vectors in which codon-optimized reprogramming factors are co-expressed by a strong retroviral promoter that is rapidly silenced in iPSC, and imaged the conversion of fibroblasts to iPSC. We combined fluorescence microscopy with long-term single cell tracking, and used live-cell imaging to analyze the emergence and composition of early iPSC clusters. Applying our engineered lentiviral vectors, we demonstrate that vector silencing typically occurs prior to or simultaneously with the induction of an Oct4-EGFP pluripotency marker. Around 7 days post-transduction (pt), a subfraction of cells in clonal colonies expressed Oct4-EGFP and rapidly expanded. Cell tracking of single cell-derived iPSC colonies supported the concept that stochastic epigenetic changes are necessary for reprogramming. We also found that iPSC colonies may emerge as a genetic mosaic originating from different clusters. Improved vector design with continuous cell tracking thus creates a powerful system to explore the subtle dynamics of biological processes such as early reprogramming events.


Subject(s)
Cellular Reprogramming/physiology , Genetic Vectors/genetics , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Lentivirus/genetics , Animals , Cells, Cultured , Cellular Reprogramming/genetics , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Teratoma/metabolism , Teratoma/pathology
5.
Nat Biotechnol ; 24(3): 351-7, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16501577

ABSTRACT

The application of human embryonic stem (hES) cells in regenerative medicine will require rigorous quality control measures to ensure the safety of hES cell-derived grafts. During propagation in vitro, hES cells can acquire cytogenetic abnormalities as well as submicroscopic genetic lesions, such as small amplifications or deletions. Many of the genetic abnormalities that arise in hES cell cultures are also implicated in human cancer development. The causes of genetic instability of hES cells in culture are poorly understood, and commonly used cytogenetic methods for detection of abnormal cells are capable only of low-throughput analysis on small numbers of cells. The identification of biomarkers of genetic instability in hES cells would greatly facilitate the development of culture methods that preserve genomic integrity. Here we show that CD30, a member of the tumor necrosis factor receptor superfamily, is expressed on transformed but not normal hES cells, and that CD30 expression protects hES cells against apoptosis.


Subject(s)
Carcinoma, Embryonal/metabolism , Carcinoma, Embryonal/pathology , Ki-1 Antigen/metabolism , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Biomarkers/analysis , Cell Culture Techniques , Cell Differentiation , Cell Line, Transformed , Cell Survival , Cell Transformation, Neoplastic , Cells, Cultured , Humans , Immunohistochemistry , Karyotyping
6.
Cell Syst ; 3(5): 480-490.e13, 2016 11 23.
Article in English | MEDLINE | ID: mdl-27883891

ABSTRACT

Many cellular effectors of pluripotency are dynamically regulated. In principle, regulatory mechanisms can be inferred from single-cell observations of effector activity across time. However, rigorous inference techniques suitable for noisy, incomplete, and heterogeneous data are lacking. Here, we introduce stochastic inference on lineage trees (STILT), an algorithm capable of identifying stochastic models that accurately describe the quantitative behavior of cell fate markers observed using time-lapse microscopy data collected from proliferating cell populations. STILT performs exact Bayesian parameter inference and stochastic model selection using a particle-filter-based algorithm. We use STILT to investigate the autoregulation of Nanog, a heterogeneously expressed core pluripotency factor, in mouse embryonic stem cells. STILT rejects the possibility of positive Nanog autoregulation with high confidence; instead, model predictions indicate weak negative feedback. We use STILT for rational experimental design and validate model predictions using novel experimental data. STILT is available for download as an open source framework from http://www.imsb.ethz.ch/research/claassen/Software/stilt---stochastic-inference-on-lineage-trees.html.


Subject(s)
Cell Lineage , Animals , Bayes Theorem , Cell Differentiation , Homeodomain Proteins , Homeostasis , Mice , Models, Biological , Mouse Embryonic Stem Cells , Nanog Homeobox Protein
7.
Trends Cardiovasc Med ; 13(7): 295-301, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14522470

ABSTRACT

Human embryonic stem (ES) cells are cultured cell lines derived from the inner cell mass of the blastocyst that can be grown indefinitely in their undifferentiated state, yet also are capable of differentiating into all cells of the adult body as well as extraembryonic tissue. Detailed investigation of the properties of embryonal carcinoma cells of both the mouse and human as well as mouse and primate ES cells led to the initial isolation and subsequent culture of human ES cells. The methodologies that were developed to culture and characterize these cell lines have provided a template for the development of human ES cells. The existing data illustrate a number of important differences and similarities between human ES cells and the other cell lines. This review aims to provide a brief historic account of the development of the mammalian pluripotent stem cell field; describe how this led to the isolation, culture, and characterization of human ES cells; and discuss the potential implications of recent advances.


Subject(s)
Blastocyst/cytology , Cell Culture Techniques/methods , Stem Cells/cytology , Animals , Antigens, Surface/analysis , Blastocyst/immunology , Cell Division , Cell Line, Tumor , Humans , Stem Cells/immunology , Tumor Cells, Cultured
8.
Nat Cell Biol ; 17(10): 1235-46, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26389663

ABSTRACT

Transcription factor (TF) networks are thought to regulate embryonic stem cell (ESC) pluripotency. However, TF expression dynamics and regulatory mechanisms are poorly understood. We use reporter mouse ESC lines allowing non-invasive quantification of Nanog or Oct4 protein levels and continuous long-term single-cell tracking and quantification over many generations to reveal diverse TF protein expression dynamics. For cells with low Nanog expression, we identified two distinct colony types: one re-expressed Nanog in a mosaic pattern, and the other did not re-express Nanog over many generations. Although both expressed pluripotency markers, they exhibited differences in their TF protein correlation networks and differentiation propensities. Sister cell analysis revealed that differences in Nanog levels are not necessarily accompanied by differences in the expression of other pluripotency factors. Thus, regulatory interactions of pluripotency TFs are less stringently implemented in individual self-renewing ESCs than assumed at present.


Subject(s)
Embryonic Stem Cells/metabolism , Gene Regulatory Networks , Pluripotent Stem Cells/metabolism , Transcription Factors/genetics , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Cell Differentiation/genetics , Cell Tracking/methods , Cells, Cultured , Embryonic Stem Cells/cytology , Gene Expression , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Microscopy, Fluorescence , Nanog Homeobox Protein , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Pluripotent Stem Cells/cytology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Single-Cell Analysis/methods , Time-Lapse Imaging/methods , Transcription Factors/metabolism , Transduction, Genetic , Red Fluorescent Protein
12.
Stem Cell Res ; 1(1): 45-60, 2007 Oct.
Article in English | MEDLINE | ID: mdl-19383386

ABSTRACT

Mouse embryonic stem cells (mESC) exhibit cell cycle properties entirely distinct from those of somatic cells. Here we investigated the cell cycle characteristics of human embryonic stem cells (hESC). HESC could be sorted into populations based on the expression level of the cell surface stem cell marker GCTM-2. Compared to mESC, a significantly higher proportion of hESC (GCTM-2(+) Oct-4(+) cells) resided in G(1) and retained G(1)-phase-specific hypophosphorylated retinoblastoma protein (pRb). We showed that suppression of traverse through G(1) is sufficient to promote hESC differentiation. Like mESC, hESC expressed cyclin E constitutively, were negative for D-type cyclins, and did not respond to CDK-4 inhibition. By contrast, cyclin A expression was periodic in hESC and coincided with S and G(2)/M phase progression. FGF-2 acted solely to sustain hESC pluripotency rather than to promote cell cycle progression or inhibit apoptosis. Differentiation increased G(1)-phase content, reinstated cyclin D activity, and restored the proliferative response to FGF-2. Treatment with CDK-2 inhibitor delayed hESC in G(1) and S phase, resulting in accumulation of cells with hypophosphorylated pRb, GCTM-2, and Oct-4 and, interestingly, a second pRb(+) GCTM-2(+) subpopulation lacking Oct-4. We discuss evidence for a G(1)-specific, pRb-dependent restriction checkpoint in hESC closely associated with the regulation of pluripotency.


Subject(s)
Cell Cycle , Cell Differentiation , Biomarkers , Embryonic Stem Cells/cytology , G1 Phase , Humans , Pluripotent Stem Cells/cytology
13.
Stem Cells ; 23(10): 1541-8, 2005.
Article in English | MEDLINE | ID: mdl-16081668

ABSTRACT

Human embryonic stem cells (hESCs) have great potential for use in research and regenerative medicine, but very little is known about the factors that maintain these cells in the pluripotent state. We investigated the role of three major mitogenic agents present in serum--sphingosine-1-phosphate (S1P), lysophosphatidic acid (LPA), and platelet-derived growth factor (PDGF)--in maintaining hESCs. We show here that although LPA does not affect hESC growth or differentiation, coincubation of S1P and PDGF in a serum-free culture medium successfully maintains hESCs in an undifferentiated state. Our studies indicate that signaling pathways activated by tyrosine kinase receptors act synergistically with those downstream from lysophospholipid receptors to maintain hESCs in the undifferentiated state. This study is the first demonstration of a role for lysophospholipid receptor signaling in the maintenance of stem cell pluri-potentiality.


Subject(s)
Lysophospholipids/physiology , Platelet-Derived Growth Factor/physiology , Sphingosine/analogs & derivatives , Stem Cells/cytology , Stem Cells/physiology , Cell Culture Techniques , Cells, Cultured , Embryo Research , Humans , Lysophospholipids/pharmacology , Platelet-Derived Growth Factor/pharmacology , Receptor, Platelet-Derived Growth Factor beta/drug effects , Receptor, Platelet-Derived Growth Factor beta/genetics , Receptors, Lysophosphatidic Acid/drug effects , Receptors, Lysophosphatidic Acid/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Sphingosine/pharmacology , Sphingosine/physiology
SELECTION OF CITATIONS
SEARCH DETAIL