Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Journal subject
Publication year range
1.
PLoS Biol ; 20(2): e3001531, 2022 02.
Article in English | MEDLINE | ID: mdl-35143473

ABSTRACT

Identifying the potential for SARS-CoV-2 reinfection is crucial for understanding possible long-term epidemic dynamics. We analysed longitudinal PCR and serological testing data from a prospective cohort of 4,411 United States employees in 4 states between April 2020 and February 2021. We conducted a multivariable logistic regression investigating the association between baseline serological status and subsequent PCR test result in order to calculate an odds ratio for reinfection. We estimated an odds ratio for reinfection ranging from 0.14 (95% CI: 0.019 to 0.63) to 0.28 (95% CI: 0.05 to 1.1), implying that the presence of SARS-CoV-2 antibodies at baseline is associated with around 72% to 86% reduced odds of a subsequent PCR positive test based on our point estimates. This suggests that primary infection with SARS-CoV-2 provides protection against reinfection in the majority of individuals, at least over a 6-month time period. We also highlight 2 major sources of bias and uncertainty to be considered when estimating the relative risk of reinfection, confounders and the choice of baseline time point, and show how to account for both in reinfection analysis.


Subject(s)
Antibodies, Viral/blood , COVID-19/immunology , Reinfection/immunology , Adolescent , Adult , Aged , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Humans , Logistic Models , Middle Aged , Polymerase Chain Reaction , Prospective Studies , Reinfection/prevention & control , SARS-CoV-2/immunology , Seroepidemiologic Studies , Time Factors , United States/epidemiology , Workplace/statistics & numerical data , Young Adult
2.
Lancet Reg Health Am ; 37: 100860, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39281423

ABSTRACT

Background: COVID-19 dynamics are driven by a complex interplay of factors including population behaviour, new variants, vaccination and immunity from prior infections. We quantify drivers of SARS-CoV-2 transmission in the Dominican Republic, an upper-middle income country of 10.8 million people. We then assess the impact of the vaccination campaign implemented in February 2021, primarily using CoronaVac, in saving lives and averting hospitalisations. Methods: We fit an age-structured, multi-variant transmission dynamic model to reported deaths, hospital bed occupancy, and seroprevalence data until December 2021, and simulate epidemic trajectories under different counterfactual scenarios. Findings: We estimate that vaccination averted 7210 hospital admissions (95% credible interval, CrI: 6830-7600), 2180 intensive care unit admissions (95% CrI: 2080-2280) and 766 deaths (95% CrI: 694-859) in the first 6 months of the campaign. If no vaccination had occurred, we estimate that an additional decrease of 10-20% in population mobility would have been required to maintain equivalent death and hospitalisation outcomes. We also found that early vaccination with CoronaVac was preferable to delayed vaccination using a product with higher efficacy. Interpretation: SARS-CoV-2 transmission dynamics in the Dominican Republic were driven by a substantial accumulation of immunity during the first two years of the pandemic but, despite this, vaccination was essential in enabling a return to pre-pandemic mobility levels without considerable additional morbidity and mortality. Funding: Medical Research Council, Wellcome Trust, Royal Society, US CDC and Australian National Health and Medical Research Council.

3.
Lancet Reg Health Am ; 16: 100390, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36408529

ABSTRACT

Background: Population-level SARS-CoV-2 immunological protection is poorly understood but can guide vaccination and non-pharmaceutical intervention priorities. Our objective was to characterise cumulative infections and immunological protection in the Dominican Republic. Methods: Household members ≥5 years were enrolled in a three-stage national household cluster serosurvey in the Dominican Republic. We measured pan-immunoglobulin antibodies against the SARS-CoV-2 spike (anti-S) and nucleocapsid glycoproteins, and pseudovirus neutralising activity against the ancestral and B.1.617.2 (Delta) strains. Seroprevalence and cumulative prior infections were weighted and adjusted for assay performance and seroreversion. Binary classification machine learning methods and pseudovirus neutralising correlates of protection were used to estimate 50% and 80% protection against symptomatic infection. Findings: Between 30 Jun and 12 Oct 2021 we enrolled 6683 individuals from 3832 households. We estimate that 85.0% (CI 82.1-88.0) of the ≥5 years population had been immunologically exposed and 77.5% (CI 71.3-83) had been previously infected. Protective immunity sufficient to provide at least 50% protection against symptomatic SARS-CoV-2 infection was estimated in 78.1% (CI 74.3-82) and 66.3% (CI 62.8-70) of the population for the ancestral and Delta strains respectively. Younger (5-14 years, OR 0.47 [CI 0.36-0.61]) and older (≥75-years, 0.40 [CI 0.28-0.56]) age, working outdoors (0.53 [0.39-0.73]), smoking (0.66 [0.52-0.84]), urban setting (1.30 [1.14-1.49]), and three vs no vaccine doses (18.41 [10.69-35.04]) were associated with 50% protection against the ancestral strain. Interpretation: Cumulative infections substantially exceeded prior estimates and overall immunological exposure was high. After controlling for confounders, markedly lower immunological protection was observed to the ancestral and Delta strains across certain subgroups, findings that can guide public health interventions and may be generalisable to other settings and viral strains. Funding: This study was funded by the US CDC.

SELECTION OF CITATIONS
SEARCH DETAIL