ABSTRACT
Although many loci have been associated with height in European ancestry populations, very few have been identified in African ancestry individuals. Furthermore, many of the known loci have yet to be generalized to and fine-mapped within a large-scale African ancestry sample. We performed sex-combined and sex-stratified meta-analyses in up to 52,764 individuals with height and genome-wide genotyping data from the African Ancestry Anthropometry Genetics Consortium (AAAGC). We additionally combined our African ancestry meta-analysis results with published European genome-wide association study (GWAS) data. In the African ancestry analyses, we identified three novel loci (SLC4A3, NCOA2, ECD/FAM149B1) in sex-combined results and two loci (CRB1, KLF6) in women only. In the African plus European sex-combined GWAS, we identified an additional three novel loci (RCCD1, G6PC3, CEP95) which were equally driven by AAAGC and European results. Among 39 genome-wide significant signals at known loci, conditioning index SNPs from European studies identified 20 secondary signals. Two of the 20 new secondary signals and none of the 8 novel loci had minor allele frequencies (MAF) < 5%. Of 802 known European height signals, 643 displayed directionally consistent associations with height, of which 205 were nominally significant (p < 0.05) in the African ancestry sex-combined sample. Furthermore, 148 of 241 loci contained ≤20 variants in the credible sets that jointly account for 99% of the posterior probability of driving the associations. In summary, trans-ethnic meta-analyses revealed novel signals and further improved fine-mapping of putative causal variants in loci shared between African and European ancestry populations.
Subject(s)
Black People/genetics , Body Height/genetics , Genome-Wide Association Study , Africa/ethnology , Black or African American/genetics , Europe/ethnology , Female , Humans , Male , Polymorphism, Single Nucleotide/geneticsABSTRACT
Height is a highly heritable, classic polygenic trait with approximately 700 common associated variants identified through genome-wide association studies so far. Here, we report 83 height-associated coding variants with lower minor-allele frequencies (in the range of 0.1-4.8%) and effects of up to 2 centimetres per allele (such as those in IHH, STC2, AR and CRISPLD2), greater than ten times the average effect of common variants. In functional follow-up studies, rare height-increasing alleles of STC2 (giving an increase of 1-2 centimetres per allele) compromised proteolytic inhibition of PAPP-A and increased cleavage of IGFBP-4 in vitro, resulting in higher bioavailability of insulin-like growth factors. These 83 height-associated variants overlap genes that are mutated in monogenic growth disorders and highlight new biological candidates (such as ADAMTS3, IL11RA and NOX4) and pathways (such as proteoglycan and glycosaminoglycan synthesis) involved in growth. Our results demonstrate that sufficiently large sample sizes can uncover rare and low-frequency variants of moderate-to-large effect associated with polygenic human phenotypes, and that these variants implicate relevant genes and pathways.
Subject(s)
Body Height/genetics , Gene Frequency/genetics , Genetic Variation/genetics , ADAMTS Proteins/genetics , Adult , Alleles , Cell Adhesion Molecules/genetics , Female , Genome, Human/genetics , Glycoproteins/genetics , Glycoproteins/metabolism , Glycosaminoglycans/biosynthesis , Hedgehog Proteins/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Interferon Regulatory Factors/genetics , Interleukin-11 Receptor alpha Subunit/genetics , Male , Multifactorial Inheritance/genetics , NADPH Oxidase 4 , NADPH Oxidases/genetics , Phenotype , Pregnancy-Associated Plasma Protein-A/metabolism , Procollagen N-Endopeptidase/genetics , Proteoglycans/biosynthesis , Proteolysis , Receptors, Androgen/genetics , Somatomedins/metabolismABSTRACT
Genome-wide association studies (GWASs) are valuable for understanding human biology, but associated loci typically contain multiple associated variants and genes. Thus, algorithms that prioritize likely causal genes and variants for a given phenotype can provide biological interpretations of association data. However, a critical, currently missing capability is to objectively compare performance of such algorithms. Typical comparisons rely on "gold standard" genes harboring causal coding variants, but such gold standards may be biased and incomplete. To address this issue, we developed Benchmarker, an unbiased, data-driven benchmarking method that compares performance of similarity-based prioritization strategies to each other (and to random chance) by leave-one-chromosome-out cross-validation with stratified linkage disequilibrium (LD) score regression. We first applied Benchmarker to 20 well-powered GWASs and compared gene prioritization based on strategies employing three different data sources, including annotated gene sets and gene expression; genes prioritized based on gene sets had higher per-SNP heritability than those prioritized based on gene expression. Additionally, in a direct comparison of three methods, DEPICT and MAGMA outperformed NetWAS. We also evaluated combinations of methods; our results indicated that combining data sources and algorithms can help prioritize higher-quality genes for follow-up. Benchmarker provides an unbiased approach to evaluate any similarity-based method that provides genome-wide prioritization of genes, variants, or gene sets and can determine the best such method for any particular GWAS. Our method addresses an important unmet need for rigorous tool assessment and can assist in mapping genetic associations to causal function.
Subject(s)
Algorithms , Genetic Loci , Genome-Wide Association Study/methods , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Benchmarking , Chromosome Mapping , Humans , PhenotypeABSTRACT
Circulating levels of adiponectin, an adipocyte-secreted protein associated with cardiovascular and metabolic risk, are highly heritable. To gain insights into the biology that regulates adiponectin levels, we performed an exome array meta-analysis of 265,780 genetic variants in 67,739 individuals of European, Hispanic, African American, and East Asian ancestry. We identified 20 loci associated with adiponectin, including 11 that had been reported previously (p < 2 × 10-7). Comparison of exome array variants to regional linkage disequilibrium (LD) patterns and prior genome-wide association study (GWAS) results detected candidate variants (r2 > .60) spanning as much as 900 kb. To identify potential genes and mechanisms through which the previously unreported association signals act to affect adiponectin levels, we assessed cross-trait associations, expression quantitative trait loci in subcutaneous adipose, and biological pathways of nearby genes. Eight of the nine loci were also associated (p < 1 × 10-4) with at least one obesity or lipid trait. Candidate genes include PRKAR2A, PTH1R, and HDAC9, which have been suggested to play roles in adipocyte differentiation or bone marrow adipose tissue. Taken together, these findings provide further insights into the processes that influence circulating adiponectin levels.
Subject(s)
Adiponectin/genetics , Adipose Tissue/pathology , Exome/genetics , Genetic Predisposition to Disease , Lipids/analysis , Obesity/etiology , Polymorphism, Single Nucleotide , Adipose Tissue/metabolism , Adolescent , Adult , Black or African American/genetics , Aged , Aged, 80 and over , Female , Hispanic or Latino/genetics , Humans , Male , Middle Aged , Obesity/pathology , Phenotype , Quantitative Trait Loci , White People/genetics , Young AdultSubject(s)
CRISPR-Cas Systems , Cell- and Tissue-Based Therapy , Gene Editing , Hematopoietic Stem Cell Transplantation , Humans , Gene Editing/methods , CRISPR-Associated Protein 9 , Cell- and Tissue-Based Therapy/adverse effects , Cell- and Tissue-Based Therapy/methods , Antigens, CD34 , Hematopoietic Stem Cells , Hematopoietic Stem Cell Transplantation/methods , Postoperative Complications/genetics , Postoperative Complications/prevention & controlABSTRACT
Prenatal stress exposure is associated with adverse psychiatric outcomes, including autism and ADHD, as well as locomotor and social inhibition and anxiety-like behaviors in animal offspring. Similarly, maternal immune activation also contributes to psychiatric risk and aberrant offspring behavior. The mechanisms underlying these outcomes are not clear. Offspring microglia and the pro-inflammatory cytokine interleukin-6 (IL-6), known to influence microglia, may serve as common mechanisms between prenatal stress and prenatal immune activation. To evaluate the role of prenatal IL-6 in prenatal stress, microglia morphological analyses were conducted at embryonic days 14 (E14), E15, and in adult mice. Offspring microglia and behavior were evaluated after repetitive maternal restraint stress, repetitive maternal IL-6, or maternal IL-6 blockade during stress from E12 onwards. At E14, novel changes in cortical plate embryonic microglia were documented-a greater density of the mutivacuolated morphology. This resulted from either prenatal stress or IL-6 exposure and was prevented by IL-6 blockade during prenatal stress. Prenatal stress also resulted in increased microglia ramification in adult brain, as has been previously shown. As with embryonic microglia, prenatal IL-6 recapitulated prenatal stress-induced changes in adult microglia. Furthermore, prenatal IL-6 was able to recapitulate the delay in GABAergic progenitor migration caused by prenatal stress. However, IL-6 mechanisms were not necessary for this delay, which persisted after prenatal stress despite IL-6 blockade. As we have previously demonstrated, behavioral effects of prenatal stress in offspring, including increased anxiety-like behavior, decreased sociability, and locomotor inhibition, may be related to these GABAergic delays. While adult microglia changes were ameliorated by IL-6 blockade, these behavioral changes were independent of IL-6 mechanisms, similar to GABAergic delays. This and previous work from our laboratory suggests that multiple mechanisms, including GABAergic delays, may underlie prenatal stress-linked deficits.
Subject(s)
Interleukin-6/pharmacology , Microglia/drug effects , Stress, Psychological/immunology , Animals , Anxiety/immunology , Behavior, Animal/drug effects , Brain/metabolism , Cytokines/metabolism , Disease Models, Animal , Female , GABA Agents/pharmacology , GABAergic Neurons/drug effects , Interleukin-6/metabolism , Interleukin-6/physiology , Male , Mice , Pregnancy , Prenatal Exposure Delayed Effects/immunologyABSTRACT
Genome-wide association studies (GWASs) are a valuable tool for understanding the biology of complex human traits and diseases, but associated variants rarely point directly to causal genes. In the present study, we introduce a new method, polygenic priority score (PoPS), that learns trait-relevant gene features, such as cell-type-specific expression, to prioritize genes at GWAS loci. Using a large evaluation set of genes with fine-mapped coding variants, we show that PoPS and the closest gene individually outperform other gene prioritization methods, but observe the best overall performance by combining PoPS with orthogonal methods. Using this combined approach, we prioritize 10,642 unique gene-trait pairs across 113 complex traits and diseases with high precision, finding not only well-established gene-trait relationships but nominating new genes at unresolved loci, such as LGR4 for estimated glomerular filtration rate and CCR7 for deep vein thrombosis. Overall, we demonstrate that PoPS provides a powerful addition to the gene prioritization toolbox.
Subject(s)
Multifactorial Inheritance , Quantitative Trait Loci , Humans , Multifactorial Inheritance/genetics , Quantitative Trait Loci/genetics , Genome-Wide Association Study/methods , Genetic Predisposition to Disease/genetics , Phenotype , Polymorphism, Single Nucleotide/geneticsABSTRACT
Background: Genome-wide association studies for glycemic traits have identified hundreds of loci associated with these biomarkers of glucose homeostasis. Despite this success, the challenge remains to link variant associations to genes, and underlying biological pathways. Methods: To identify coding variant associations which may pinpoint effector genes at both novel and previously established genome-wide association loci, we performed meta-analyses of exome-array studies for four glycemic traits: glycated hemoglobin (HbA1c, up to 144,060 participants), fasting glucose (FG, up to 129,665 participants), fasting insulin (FI, up to 104,140) and 2hr glucose post-oral glucose challenge (2hGlu, up to 57,878). In addition, we performed network and pathway analyses. Results: Single-variant and gene-based association analyses identified coding variant associations at more than 60 genes, which when combined with other datasets may be useful to nominate effector genes. Network and pathway analyses identified pathways related to insulin secretion, zinc transport and fatty acid metabolism. HbA1c associations were strongly enriched in pathways related to blood cell biology. Conclusions: Our results provided novel glycemic trait associations and highlighted pathways implicated in glycemic regulation. Exome-array summary statistic results are being made available to the scientific community to enable further discoveries.
ABSTRACT
Leptin influences food intake by informing the brain about the status of body fat stores. Rare LEP mutations associated with congenital leptin deficiency cause severe early-onset obesity that can be mitigated by administering leptin. However, the role of genetic regulation of leptin in polygenic obesity remains poorly understood. We performed an exome-based analysis in up to 57,232 individuals of diverse ancestries to identify genetic variants that influence adiposity-adjusted leptin concentrations. We identify five novel variants, including four missense variants, in LEP, ZNF800, KLHL31, and ACTL9, and one intergenic variant near KLF14. The missense variant Val94Met (rs17151919) in LEP was common in individuals of African ancestry only, and its association with lower leptin concentrations was specific to this ancestry (P = 2 × 10-16, n = 3,901). Using in vitro analyses, we show that the Met94 allele decreases leptin secretion. We also show that the Met94 allele is associated with higher BMI in young African-ancestry children but not in adults, suggesting that leptin regulates early adiposity.
Subject(s)
Adiposity/genetics , Leptin/metabolism , Racial Groups/genetics , Gene Expression Regulation, Developmental , Genetic Variation , Genotype , Humans , Leptin/blood , Leptin/chemistry , Leptin/genetics , Models, Molecular , Protein ConformationABSTRACT
Body-fat distribution is a risk factor for adverse cardiovascular health consequences. We analyzed the association of body-fat distribution, assessed by waist-to-hip ratio adjusted for body mass index, with 228,985 predicted coding and splice site variants available on exome arrays in up to 344,369 individuals from five major ancestries (discovery) and 132,177 European-ancestry individuals (validation). We identified 15 common (minor allele frequency, MAF ≥5%) and nine low-frequency or rare (MAF <5%) coding novel variants. Pathway/gene set enrichment analyses identified lipid particle, adiponectin, abnormal white adipose tissue physiology and bone development and morphology as important contributors to fat distribution, while cross-trait associations highlight cardiometabolic traits. In functional follow-up analyses, specifically in Drosophila RNAi-knockdowns, we observed a significant increase in the total body triglyceride levels for two genes (DNAH10 and PLXND1). We implicate novel genes in fat distribution, stressing the importance of interrogating low-frequency and protein-coding variants.
Subject(s)
Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Homeostasis/genetics , Lipids/genetics , Proteins/genetics , Animals , Body Fat Distribution/methods , Body Mass Index , Case-Control Studies , Drosophila/genetics , Exome/genetics , Female , Gene Frequency/genetics , Genome-Wide Association Study/methods , Humans , Male , Risk Factors , Waist-Hip Ratio/methodsABSTRACT
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
ABSTRACT
In the published version of this paper, the name of author Emanuele Di Angelantonio was misspelled. This error has now been corrected in the HTML and PDF versions of the article.
ABSTRACT
In the version of this article originally published, one of the two authors with the name Wei Zhao was omitted from the author list and the affiliations for both authors were assigned to the single Wei Zhao in the author list. In addition, the ORCID for Wei Zhao (Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA) was incorrectly assigned to author Wei Zhou. The errors have been corrected in the HTML and PDF versions of the article.
ABSTRACT
Genome-wide association studies (GWAS) have identified >250 loci for body mass index (BMI), implicating pathways related to neuronal biology. Most GWAS loci represent clusters of common, noncoding variants from which pinpointing causal genes remains challenging. Here we combined data from 718,734 individuals to discover rare and low-frequency (minor allele frequency (MAF) < 5%) coding variants associated with BMI. We identified 14 coding variants in 13 genes, of which 8 variants were in genes (ZBTB7B, ACHE, RAPGEF3, RAB21, ZFHX3, ENTPD6, ZFR2 and ZNF169) newly implicated in human obesity, 2 variants were in genes (MC4R and KSR2) previously observed to be mutated in extreme obesity and 2 variants were in GIPR. The effect sizes of rare variants are ~10 times larger than those of common variants, with the largest effect observed in carriers of an MC4R mutation introducing a stop codon (p.Tyr35Ter, MAF = 0.01%), who weighed ~7 kg more than non-carriers. Pathway analyses based on the variants associated with BMI confirm enrichment of neuronal genes and provide new evidence for adipocyte and energy expenditure biology, widening the potential of genetically supported therapeutic targets in obesity.