Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
J Cell Sci ; 137(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38084966

ABSTRACT

Elimination of virally infected or tumoral cells is mediated by cytotoxic T cells (CTL). Upon antigen recognition, CTLs assemble a specialized signaling and secretory domain at the interface with their target, the immune synapse (IS). During IS formation, CTLs acquire a transient polarity, marked by re-orientation of the centrosome and microtubule cytoskeleton toward the IS, thus directing the transport and delivery of the lytic granules to the target cell. Based on the implication that the kinase Aurora A has a role in CTL function, we hypothesized that its substrate, the mitotic regulator Polo-like kinase 1 (PLK1), might participate in CTL IS assembly. We demonstrate that PLK1 is phosphorylated upon TCR triggering and polarizes to the IS. PLK1 silencing or inhibition results in impaired IS assembly and function, as witnessed by defective synaptic accumulation of T cell receptors (TCRs), as well as compromised centrosome and lytic granule polarization to the IS, resulting in impaired target cell killing. This function is achieved by coupling early signaling to microtubule dynamics, a function pivotal for CTL-mediated cytotoxicity. These results identify PLK1 as a new player in CTL IS assembly and function.


Subject(s)
Polo-Like Kinase 1 , T-Lymphocytes, Cytotoxic , T-Lymphocytes, Cytotoxic/metabolism , Centrosome/metabolism , Signal Transduction , Microtubules/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism
2.
J Cell Sci ; 134(16)2021 08 15.
Article in English | MEDLINE | ID: mdl-34423835

ABSTRACT

Components of the intraflagellar transport (IFT) system that regulates the assembly of the primary cilium are co-opted by the non-ciliated T cell to orchestrate polarized endosome recycling and to sustain signaling during immune synapse formation. Here, we investigated the potential role of Bardet-Biedl syndrome 1 protein (BBS1), an essential core component of the BBS complex that cooperates with the IFT system in ciliary protein trafficking, in the assembly of the T cell synapse. We demonstrated that BBS1 allows for centrosome polarization towards the immune synapse. This function is achieved through the clearance of centrosomal F-actin and its positive regulator WASH1 (also known as WASHC1), a process that we demonstrated to be dependent on the proteasome. We show that BBS1 regulates this process by coupling the 19S proteasome regulatory subunit to the microtubule motor dynein for its transport to the centrosome. Our data identify the ciliopathy-related protein BBS1 as a new player in T cell synapse assembly that functions upstream of the IFT system to set the stage for polarized vesicular trafficking and sustained signaling. This article has an associated First Person interview with the first author of the paper.


Subject(s)
Bardet-Biedl Syndrome , Cilia , Bardet-Biedl Syndrome/genetics , Cell Polarity , Endosomes , Humans , Microtubule-Associated Proteins/genetics , Synapses , T-Lymphocytes
3.
Blood ; 137(16): 2182-2195, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33181836

ABSTRACT

The stromal microenvironment is central to chronic lymphocytic leukemia (CLL) pathogenesis. How leukemic cells condition the stroma to enhance its chemoattractant properties remains elusive. Here, we show that mouse and human CLL cells promote the contact-independent stromal expression of homing chemokines. This function was strongly enhanced in leukemic cells from Eµ-TCL1 mice lacking the pro-oxidant p66Shc adaptor, which develop an aggressive disease with organ infiltration. We identified interleukin-9 (IL-9) as the soluble factor, negatively modulated by p66Shc, that is responsible for the chemokine-elevating activity of leukemic cells on stromal cells. IL-9 blockade in Eµ-TCL1/p66Shc-/- mice resulted in a decrease in the nodal expression of homing chemokines, which correlated with decreased leukemic cell invasiveness. IL-9 levels were found to correlate inversely with residual p66Shc in p66Shc-deficient human CLL cells (n = 52 patients). p66Shc reconstitution in CLL cells normalized IL-9 expression and neutralized their chemokine-elevating activity. Notably, high IL-9 expression in CLL cells directly correlates with lymphadenopathy, liver infiltration, disease severity, and overall survival, emerging as an independent predictor of disease outcome. Our results demonstrate that IL-9 modulates the chemokine landscape in the stroma and that p66Shc, by regulating IL-9 expression, fine tunes the ability of leukemic cells to shape the microenvironment, thereby contributing to CLL pathogenesis.

4.
Int J Mol Sci ; 23(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36292997

ABSTRACT

Initially discovered as the smallest component of the intraflagellar transport (IFT) system, the IFT20 protein has been found to be implicated in several unconventional mechanisms beyond its essential role in the assembly and maintenance of the primary cilium. IFT20 is now considered a key player not only in ciliogenesis but also in vesicular trafficking of membrane receptors and signaling proteins. Moreover, its ability to associate with a wide array of interacting partners in a cell-type specific manner has expanded the function of IFT20 to the regulation of intracellular degradative and secretory pathways. In this review, we will present an overview of the multifaceted role of IFT20 in both ciliated and non-ciliated cells.


Subject(s)
Carrier Proteins , Cell Physiological Phenomena , Carrier Proteins/metabolism , Biological Transport/physiology
5.
Haematologica ; 104(10): 2040-2052, 2019 10.
Article in English | MEDLINE | ID: mdl-30819907

ABSTRACT

The Shc family adaptor p66Shc acts as a negative regulator of proliferative and survival signals triggered by the B-cell receptor and, by enhancing the production of reactive oxygen species, promotes oxidative stress-dependent apoptosis. Additionally, p66Shc controls the expression and function of chemokine receptors that regulate lymphocyte traffic. Chronic lymphocytic leukemia cells have a p66Shc expression defect which contributes to their extended survival and correlates with poor prognosis. We analyzed the impact of p66Shc ablation on disease severity and progression in the Eµ-TCL1 mouse model of chronic lymphocytic leukemia. We showed that Eµ-TCL1/p66Shc-/- mice developed an aggressive disease that had an earlier onset, occurred at a higher incidence and led to earlier death compared to that in Eµ-TCL1 mice. Eµ-TCL1/p66Shc-/- mice displayed substantial leukemic cell accumulation in both nodal and extranodal sites. The target organ selectivity correlated with upregulation of chemokine receptors whose ligands are expressed therein. This also applied to chronic lymphocytic leukemia cells, where chemokine receptor expression and extent of organ infiltration were found to correlate inversely with these cells' level of p66Shc expression. p66Shc expression declined with disease progression in Eµ-TCL1 mice and could be restored by treatment with the Bruton tyrosine kinase inhibitor ibrutinib. Our results highlight p66Shc deficiency as an important factor in the progression and severity of chronic lymphocytic leukemia and underscore p66Shc expression as a relevant therapeutic target.


Subject(s)
Carcinogenesis/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Neoplasm Proteins/metabolism , Neoplasms, Experimental/metabolism , Receptors, Chemokine/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/deficiency , Animals , Carcinogenesis/genetics , Carcinogenesis/pathology , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mice , Mice, Knockout , Neoplasm Proteins/genetics , Neoplasms, Experimental/genetics , Neoplasms, Experimental/pathology , Receptors, Chemokine/genetics , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism
6.
Pharmacol Res ; 134: 118-133, 2018 08.
Article in English | MEDLINE | ID: mdl-29898412

ABSTRACT

The development of T cell mediated immunity relies on the assembly of a highly specialized interface between T cell and antigen presenting cell (APC), known as the immunological synapse (IS). IS assembly is triggered when the T cell receptor (TCR) binds to specific peptide antigen presented in association to the major histocompatibility complex (MHC) by the APC, and is followed by the spatiotemporal dynamic redistribution of TCR, integrins, co-stimulatory receptors and signaling molecules, allowing for the fine-tuning and integration of the signals that lead to T cell activation. The knowledge acquired to date about the mechanisms of IS assembly underscores this structure as a robust pharmacological target. The activity of molecules involved in IS assembly and function can be targeted by specific compounds to modulate the immune response in a number of disorders, including cancers and autoimmune diseases, or in transplanted patients. Here, we will review the state-of-the art of the current therapies which exploit the IS to modulate the immune response.


Subject(s)
Antineoplastic Agents/pharmacology , Immunity, Cellular/drug effects , Immunologic Factors/pharmacology , Immunological Synapses/drug effects , Immunotherapy/methods , Lymphocyte Activation/drug effects , Neoplasms/drug therapy , T-Lymphocytes/drug effects , Animals , Humans , Lymphocytes, Tumor-Infiltrating/drug effects , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Signal Transduction/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
7.
Traffic ; 16(3): 241-9, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25393976

ABSTRACT

The signals that orchestrate the process of T cell activation are coordinated at the specialized interface that forms upon contact with an antigen presenting cell displaying a specific MHC-associated peptide ligand, known as the immune synapse. The central role of vesicular traffic in the assembly of the immune synapse has emerged only in recent years with the finding that sustained T-cell receptor (TCR) signaling involves delivery of TCR/CD3 complexes from an intracellular pool associated with recycling endosomes. A number of receptors as well as membrane-associated signaling mediators have since been demonstrated to exploit this process to localize to the immune synapse. Here, we will review our current understanding of the mechanisms responsible for TCR recycling, with a focus on the intraflagellar transport system, a multimolecular complex that is responsible for the assembly and function of the primary cilium which we have recently implicated in polarized endosome recycling to the immune synapse.


Subject(s)
Cilia/immunology , Immunological Synapses/immunology , Receptors, Antigen, T-Cell/immunology , Synaptic Vesicles/immunology , T-Lymphocytes/immunology , Animals , Biological Transport/immunology , Endosomes/immunology , Humans , Signal Transduction/immunology
8.
J Cell Sci ; 128(14): 2541-52, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26034069

ABSTRACT

IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, regulates immune synapse assembly in the non-ciliated T-cell by promoting T-cell receptor (TCR) recycling. Here, we have addressed the role of Rab8 (for which there are two isoforms Rab8a and Rab8b), a small GTPase implicated in ciliogenesis, in TCR traffic to the immune synapse. We show that Rab8, which colocalizes with IFT20 in Rab11(+) endosomes, is required for TCR recycling. Interestingly, as opposed to in IFT20-deficient T-cells, TCR(+) endosomes polarized normally beneath the immune synapse membrane in the presence of dominant-negative Rab8, but were unable to undergo the final docking or fusion step. This could be accounted for by the inability of the vesicular (v)-SNARE VAMP-3 to cluster at the immune synapse in the absence of functional Rab8, which is responsible for its recruitment. Of note, and similar to in T-cells, VAMP-3 interacts with Rab8 at the base of the cilium in NIH-3T3 cells, where it regulates ciliary growth and targeting of the protein smoothened. The results identify Rab8 as a new player in vesicular traffic to the immune synapse and provide insight into the pathways co-opted by different cell types for immune synapse assembly and ciliogenesis.


Subject(s)
Immunological Synapses/metabolism , Receptors, Antigen, T-Cell/metabolism , Vesicle-Associated Membrane Protein 3/metabolism , rab GTP-Binding Proteins/metabolism , Animals , Endosomes/genetics , Endosomes/metabolism , Humans , Immunological Synapses/genetics , Jurkat Cells , Mice , NIH 3T3 Cells , Receptors, Antigen, T-Cell/genetics , SNARE Proteins/genetics , SNARE Proteins/metabolism , Vesicle-Associated Membrane Protein 3/genetics , rab GTP-Binding Proteins/genetics
9.
Immunol Rev ; 251(1): 97-112, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23278743

ABSTRACT

Accumulating evidence underscores the immune synapse (IS) of naive T cells as a site of intense vesicular trafficking. At variance with helper and cytolytic effectors, which use the IS as a secretory platform to deliver cytokines and/or lytic granules to their cellular targets, this process is exploited by naive T cells as a means to regulate the assembly and maintenance of the IS, on which productive signaling and cell activation crucially depend. We have recently identified a role of the intraflagellar transport (IFT) system, which is responsible for the assembly of the primary cilium, in the non-ciliated T-cell, where it controls IS assembly by promoting polarized T-cell receptor recycling. This unexpected finding not only provides new insight into the mechanisms of IS assembly but also strongly supports the notion that the IS and the primary cilium, which are both characterized by a specialized membrane domain highly enriched in receptors and signaling mediators, share architectural similarities and are homologous structures. Here, we review our current understanding of vesicular trafficking in the regulation of the assembly and maintenance of the naive T-cell IS and the primary cilium, with a focus on the IFT system.


Subject(s)
Cell Compartmentation/immunology , Cilia/immunology , Immunological Synapses/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Transport Vesicles/immunology , Animals , Cytokines/immunology , Cytokinesis/immunology , Cytotoxicity, Immunologic , Humans , Signal Transduction/immunology
10.
J Cell Sci ; 127(Pt 9): 1924-37, 2014 May 01.
Article in English | MEDLINE | ID: mdl-24554435

ABSTRACT

T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5(+) endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis.


Subject(s)
Synapses/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Antigen-Presenting Cells/metabolism , Biological Transport/physiology , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , Cells, Cultured , Flow Cytometry , Humans , Immunoblotting , Immunoprecipitation , Jurkat Cells , Microscopy, Fluorescence , Protein Binding/genetics , Protein Transport/genetics , Protein Transport/physiology , Receptors, Antigen, T-Cell/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/physiology , rab GTP-Binding Proteins/genetics , rab GTP-Binding Proteins/metabolism , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism
11.
Trends Immunol ; 32(4): 139-45, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21388881

ABSTRACT

The assembly and maintenance of primary cilia, which orchestrate signaling pathways centrally implicated in cell proliferation, differentiation and migration, are ensured by multimeric protein particles in a process known as intraflagellar transport (IFT). It has recently been demonstrated that a number of IFT components are expressed in hematopoietic cells, which have no cilia. Here, we summarize data for an unexpected role of IFT proteins in immune synapse assembly and intracellular membrane trafficking in T lymphocytes, and discuss the hypothesis that the immune synapse could represent the functional homolog of the primary cilium in these cells.


Subject(s)
Flagella/metabolism , Immunological Synapses/metabolism , Animals , Biological Transport , Flagella/immunology , Humans , Immunological Synapses/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism
12.
Cell Death Dis ; 15(2): 144, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360867

ABSTRACT

The tumor microenvironment (TME) plays a central role in the pathogenesis of chronic lymphocytic leukemia (CLL), contributing to disease progression and chemoresistance. Leukemic cells shape the TME into a pro-survival and immunosuppressive niche through contact-dependent and contact-independent interactions with the cellular components of the TME. Immune synapse (IS) formation is defective in CLL. Here we asked whether soluble factors released by CLL cells contribute to their protection from cytotoxic T cell (CTL)-mediated killing by interfering with this process. We found that healthy CTLs cultured in media conditioned by leukemic cells from CLL patients or Eµ-TCL1 mice upregulate the exhaustion marker PD-1 and become unable to form functional ISs and kill target cells. These defects were more pronounced when media were conditioned by leukemic cells lacking p66Shc, a proapoptotic adapter whose deficiency has been implicated in disease aggressiveness both in CLL and in the Eµ-TCL1 mouse model. Multiplex ELISA assays showed that leukemic cells from Eµ-TCL1 mice secrete abnormally elevated amounts of CCL22, CCL24, IL-9 and IL-10, which are further upregulated in the absence of p66Shc. Among these, IL-9 and IL-10 were also overexpressed in leukemic cells from CLL patients, where they inversely correlated with residual p66Shc. Using neutralizing antibodies or the recombinant cytokines we show that IL-9, but not IL-10, mediates both the enhancement in PD-1 expression and the suppression of effector functions in healthy CTLs. Our results demonstrate that IL-9 secreted by leukemic cells negatively modulates the anti-tumor immune abilities of CTLs, highlighting a new suppressive mechanism and a novel potential therapeutical target in CLL.


Subject(s)
Interleukin-9 , Leukemia, Lymphocytic, Chronic, B-Cell , Animals , Humans , Mice , Immunologic Factors , Interleukin-10/metabolism , Interleukin-9/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Programmed Cell Death 1 Receptor/metabolism , Proto-Oncogene Proteins/metabolism , Src Homology 2 Domain-Containing, Transforming Protein 1/metabolism , T-Lymphocytes, Cytotoxic/metabolism , Tumor Microenvironment
13.
Immunol Rev ; 232(1): 115-34, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19909360

ABSTRACT

The Shc adapter family includes four members that are expressed as multiple isoforms and participate in signaling by a variety of cell-surface receptors. The biological relevance of Shc proteins as well as their variegated function, which relies on their highly conserved modular structure, is underscored by the distinct and dramatic phenotypic alterations resulting from deletion of individual Shc isoforms both in the mouse and in two model organisms, Drosophila melanogaster and Caenorhabditis elegans. The p52 isoform of ShcA couples antigen and cytokine receptors to Ras activation in both lymphoid and myeloid cells. However, the recognition of the spectrum of activities of p52ShcA in the immune system has been steadily expanding in recent years to other fundamental processes both at the cell and organism levels. Two other Shc family members, p66ShcA and p52ShcC/Rai, have been identified recently in T and B lymphocytes, where they antagonize survival and attenuate antigen receptor signaling. These developments reveal an unexpected and complex interplay of multiple Shc proteins in lymphocytes.


Subject(s)
Lymphocytes/metabolism , Receptors, Antigen/metabolism , Receptors, Cytokine/metabolism , Shc Signaling Adaptor Proteins/metabolism , Animals , Caenorhabditis elegans , Drosophila melanogaster , Feedback, Physiological , Humans , Lymphocytes/cytology , Lymphocytes/immunology , Mice , Protein Multimerization , Shc Signaling Adaptor Proteins/immunology , Signal Transduction/immunology
14.
J Exp Med ; 220(2)2023 02 06.
Article in English | MEDLINE | ID: mdl-36378226

ABSTRACT

CTL-mediated killing of virally infected or malignant cells is orchestrated at the immune synapse (IS). We hypothesized that SARS-CoV-2 may target lytic IS assembly to escape elimination. We show that human CD8+ T cells upregulate the expression of ACE2, the Spike receptor, during differentiation to CTLs. CTL preincubation with the Wuhan or Omicron Spike variants inhibits IS assembly and function, as shown by defective synaptic accumulation of TCRs and tyrosine phosphoproteins as well as defective centrosome and lytic granule polarization to the IS, resulting in impaired target cell killing and cytokine production. These defects were reversed by anti-Spike antibodies interfering with ACE2 binding and reproduced by ACE2 engagement by angiotensin II or anti-ACE2 antibodies, but not by the ACE2 product Ang (1-7). IS defects were also observed ex vivo in CTLs from COVID-19 patients. These results highlight a new strategy of immune evasion by SARS-CoV-2 based on the Spike-dependent, ACE2-mediated targeting of the lytic IS to prevent elimination of infected cells.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Peptidyl-Dipeptidase A/metabolism , Synapses/metabolism , Protein Binding
15.
Blood ; 115(18): 3726-36, 2010 May 06.
Article in English | MEDLINE | ID: mdl-20061561

ABSTRACT

Intrinsic apoptosis defects underlie to a large extent the extended survival of malignant B cells in chronic lymphocytic leukemia (CLL). Here, we show that the Shc family adapter p66Shc uncouples the B-cell receptor (BCR) from the Erk- and Akt-dependent survival pathways, thereby enhancing B-cell apoptosis. p66Shc expression was found to be profoundly impaired in CLL B cells compared with normal peripheral B cells. Moreover, significant differences in p66Shc expression were observed in patients with favorable or unfavorable prognosis, based on the mutational status of IGHV genes, with the lowest expression in the unfavorable prognosis group. Analysis of the expression of genes implicated in apoptosis defects of CLL showed an alteration in the balance of proapoptotic and antiapoptotic members of the Bcl-2 family in patients with CLL. Reconstitution experiments in CLL B cells, together with data obtained on B cells from p66Shc(-/-) mice, showed that p66Shc expression correlates with a bias in the Bcl-2 family toward proapoptotic members. The data identify p66Shc as a novel regulator of B-cell apoptosis which attenuates BCR-dependent survival signals and modulates Bcl-2 family expression. They moreover provide evidence that the p66Shc expression defect in CLL B cells may be causal to the imbalance toward the antiapoptotic Bcl-2 family members in these cells.


Subject(s)
Apoptosis , B-Lymphocytes/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Shc Signaling Adaptor Proteins/metabolism , Animals , Blotting, Western , Case-Control Studies , Cell Survival , DNA Methylation , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Mice , Mice, Knockout , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcr/genetics , Proto-Oncogene Proteins c-bcr/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Src Homology 2 Domain-Containing, Transforming Protein 1
16.
Cell Death Differ ; 29(1): 65-81, 2022 01.
Article in English | MEDLINE | ID: mdl-34294890

ABSTRACT

Ciliogenesis proteins orchestrate vesicular trafficking pathways that regulate immune synapse (IS) assembly in the non-ciliated T-cells. We hypothesized that ciliogenesis-related genes might be disease candidates for common variable immunodeficiency with impaired T-cell function (T-CVID). We identified a heterozygous, predicted pathogenic variant in the ciliogenesis protein CCDC28B present with increased frequency in a large CVID cohort. We show that CCDC28B participates in IS assembly by regulating polarized T-cell antigen receptor (TCR) recycling. This involves the CCDC28B-dependent, FAM21-mediated recruitment of the actin regulator WASH to retromer at early endosomes to promote actin polymerization. The CVID-associated CCDC28BR25W variant failed to interact with FAM21, leading to impaired synaptic TCR recycling. CVID T cells carrying the ccdc28b 211 C > T allele displayed IS defects mapping to this pathway that were corrected by overexpression of the wild-type allele. These results identify a new disease gene in T-CVID and pinpoint CCDC28B as a new player in IS assembly.


Subject(s)
Common Variable Immunodeficiency , Actins/genetics , Common Variable Immunodeficiency/genetics , Cytoskeletal Proteins , Humans , Receptors, Antigen, T-Cell/metabolism , Synapses/metabolism , T-Lymphocytes
17.
Front Cell Dev Biol ; 9: 634003, 2021.
Article in English | MEDLINE | ID: mdl-33829015

ABSTRACT

Lymphocyte homeostasis, activation and differentiation crucially rely on basal autophagy. The fine-tuning of this process depends on autophagy-related (ATG) proteins and their interaction with the trafficking machinery that orchestrates the membrane rearrangements leading to autophagosome biogenesis. The underlying mechanisms are as yet not fully understood. The intraflagellar transport (IFT) system, known for its role in cargo transport along the axonemal microtubules of the primary cilium, has emerged as a regulator of autophagy in ciliated cells. Growing evidence indicates that ciliogenesis proteins participate in cilia-independent processes, including autophagy, in the non-ciliated T cell. Here we investigate the mechanism by which IFT20, an integral component of the IFT system, regulates basal T cell autophagy. We show that IFT20 interacts with the core autophagy protein ATG16L1 and that its CC domain is essential for its pro-autophagic activity. We demonstrate that IFT20 is required for the association of ATG16L1 with the Golgi complex and early endosomes, both of which have been identified as membrane sources for phagophore elongation. This involves the ability of IFT20 to interact with proteins that are resident at these subcellular localizations, namely the golgin GMAP210 at the Golgi apparatus and Rab5 at early endosomes. GMAP210 depletion, while leading to a dispersion of ATG16L1 from the Golgi, did not affect basal autophagy. Conversely, IFT20 was found to recruit ATG16L1 to early endosomes tagged for autophagosome formation by the BECLIN 1/VPS34/Rab5 complex, which resulted in the local accumulation of LC3. Hence IFT20 participates in autophagosome biogenesis under basal conditions by regulating the localization of ATG16L1 at early endosomes to promote autophagosome biogenesis. These data identify IFT20 as a new regulator of an early step of basal autophagy in T cells.

18.
Blood ; 111(10): 5017-27, 2008 May 15.
Article in English | MEDLINE | ID: mdl-18334675

ABSTRACT

The ShcA locus encodes 3 protein isoforms that differ in tissue specificity, subcellular localization, and function. Among these, p66Shc inhibits TCR coupling to the Ras/MAPK pathway and primes T cells to undergo apoptotic death. We have investigated the outcome of p66Shc deficiency on lymphocyte development and homeostasis. We show that p66Shc(-/-) mice develop an age-related lupus-like autoimmune disease characterized by spontaneous peripheral T- and B-cell activation and proliferation, autoantibody production, and immune complex deposition in kidney and skin, resulting in autoimmune glomerulonephritis and alopecia. p66Shc(-/-) lymphocytes display enhanced proliferation in response to antigen receptor engagement in vitro and more robust immune responses both to vaccination and to allergen sensitization in vivo. The data identify p66Shc as a negative regulator of lymphocyte activation and show that loss of this protein results in breaking of immunologic tolerance and development of systemic autoimmunity.


Subject(s)
Adaptor Proteins, Signal Transducing/physiology , Apoptosis Regulatory Proteins/physiology , Autoimmunity , Lymphocyte Activation , Adaptor Proteins, Signal Transducing/deficiency , Animals , Homeostasis , Immune Tolerance , Lymphocytes/cytology , Mice , Mice, Knockout , Shc Signaling Adaptor Proteins , Src Homology 2 Domain-Containing, Transforming Protein 1
19.
Front Cell Dev Biol ; 8: 193, 2020.
Article in English | MEDLINE | ID: mdl-32274384

ABSTRACT

p66SHC is a pro-oxidant member of the SHC family of protein adaptors that acts as a negative regulator of cell survival. In lymphocytes p66SHC exploits both its adaptor and its reactive oxygen species (ROS)-elevating function to antagonize mitogenic and survival signaling and promote apoptosis. As a result, p66SHC deficiency leads to the abnormal expansion of peripheral T and B cells and lupus-like autoimmunity. Additionally, a defect in p66SHC expression is a hallmark of B cell chronic lymphocytic leukemia, where it contributes to the accumulation of long-lived neoplastic cells. We have recently provided evidence that p66SHC exerts a further layer of control on B cell homeostasis by acting as a new mitochondrial LC3-II receptor to promote the autophagic demise of dysfunctional mitochondria. Here we discuss this finding in the context of the autophagic control of B cell homeostasis, development, and differentiation in health and disease.

20.
Front Immunol ; 11: 471, 2020.
Article in English | MEDLINE | ID: mdl-32265925

ABSTRACT

By preserving cell viability and three-dimensional localization, organotypic culture stands out among the newest frontiers of cell culture. It has been successfully employed for the study of diseases among which neoplasias, where tumoral cells take advantage of the surrounding stroma to promote their own proliferation and survival. Organotypic culture acquires major importance in the context of the immune system, whose cells cross-talk in a complex and dynamic fashion to elicit productive responses. However, organotypic culture has been as yet poorly developed for and applied to primary and secondary lymphoid organs. Here we describe in detail the development of a protocol suitable for the efficient cutting of mouse spleen, which overcomes technical difficulties related to the peculiar organ texture, and for optimized organotypic culture of spleen slices. Moreover, we used microscopy, immunofluorescence, flow cytometry, and qRT-PCR to demonstrate that the majority of cells residing in spleen slices remain alive and maintain their original location in the organ architecture for several days after cutting. The development of this protocol represents a significant technical improvement in the study of the lymphoid microenvironment in both physiological and pathological conditions involving the immune system.


Subject(s)
Organ Culture Techniques , Spleen/anatomy & histology , Animals , Annexin A5/analysis , Chemokines/pharmacology , Chemotaxis/drug effects , Coloring Agents , Cytokines/biosynthesis , Cytokines/genetics , Flow Cytometry , Fluorescent Dyes , Lymphocyte Subsets/cytology , Lymphocyte Subsets/drug effects , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Microtomy/instrumentation , Microtomy/methods , Mitogens/pharmacology , RNA/genetics , RNA/isolation & purification , Real-Time Polymerase Chain Reaction , Specific Pathogen-Free Organisms , Specimen Handling/methods , Spleen/chemistry , Spleen/cytology , Spleen/physiology , Staining and Labeling/methods , Trypan Blue
SELECTION OF CITATIONS
SEARCH DETAIL