Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Affiliation country
Publication year range
1.
J Anim Ecol ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39045801

ABSTRACT

Birds, bats and ants are recognised as significant arthropod predators. However, empirical studies reveal inconsistent trends in their relative roles in top-down control across strata. Here, we describe the differences between forest strata in the separate effects of birds, bats and ants on arthropod densities and their cascading effects on plant damage. We implemented a factorial design to exclude vertebrates and ants in both the canopy and understorey. Additionally, we separately excluded birds and bats from the understorey using diurnal and nocturnal exclosures. At the end of the experiments, we collected all arthropods and assessed herbivory damage. Arthropods responded similarly to predator exclusion across forest strata, with a density increase of 81% on trees without vertebrates and 53% without both vertebrates and ants. Additionally, bird exclusion alone led to an 89% increase in arthropod density, while bat exclusion resulted in a 63% increase. Herbivory increased by 42% when vertebrates were excluded and by 35% when both vertebrates and ants were excluded. Bird exclusion alone increased herbivory damage by 28%, while the exclusion of bats showed a detectable but non-significant increase (by 22%). In contrast, ant exclusion had no significant effect on arthropod density or herbivory damage across strata. Our results reveal that the effects of birds and bats on arthropod density and herbivory damage are similar between the forest canopy and understorey in this temperate forest. In addition, ants were not found to be significant predators in our system. Furthermore, birds, bats and ants appeared to exhibit antagonistic relationships in influencing arthropod density. These findings highlight, unprecedentedly, the equal importance of birds and bats in maintaining ecological balance across different strata of a temperate forest.

2.
Oecologia ; 204(4): 915-930, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38613574

ABSTRACT

Insect herbivores and their parasitoids play a crucial role in terrestrial trophic interactions in tropical forests. These interactions occur across the entire vertical gradient of the forest. This study compares how caterpillar communities, and their parasitism rates, vary across vertical strata and between caterpillar defensive strategies in a semi deciduous tropical forest in Nditam, Cameroon. Within a 0.1 ha plot, all trees with a diameter at breast height (DBH) ≥ 5 cm were felled and systematically searched for caterpillars. We divided the entire vertical gradient of the forest into eight, five-metre strata. All caterpillars were assigned to a stratum based on their collection height, reared, identified, and classified into one of three defensive traits: aposematic, cryptic and shelter-building. Caterpillar species richness and diversity showed a midstory peak, whereas density followed the opposite pattern, decreasing in the midstory and then increasing towards the highest strata. This trend was driven by some highly dense shelter-building caterpillars in the upper canopy. Specialisation indices indicated decreasing levels of caterpillar generality with increasing height, a midstory peak in vulnerability, and increasing connectance towards the upper canopy, although the latter was likely driven by decreasing network size. Both aposematic and shelter-building caterpillars had significantly higher parasitism rates than cryptic caterpillars. Our results highlight nuanced changes in caterpillar communities across forest strata and provide evidence that defences strategies are important indicators of parasitism rates in caterpillars and that both aposematic and shelter-building caterpillars could be considered a "safe haven" for parasitoids.


Subject(s)
Forests , Larva , Animals , Cameroon , Herbivory , Tropical Climate , Host-Parasite Interactions
SELECTION OF CITATIONS
SEARCH DETAIL