Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Immunol ; 209(7): 1243-1251, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36165182

ABSTRACT

Mouse models of active systemic anaphylaxis rely predominantly on IgG Abs forming IgG-allergen immune complexes that induce IgG receptor-expressing neutrophils and monocytes/macrophages to release potent mediators, leading to systemic effects. Whether anaphylaxis initiates locally or systemically remains unknown. In this study, we aimed at identifying the anatomical location of IgG-allergen immune complexes during anaphylaxis. Active systemic anaphylaxis was induced following immunization with BSA and i.v. challenge with fluorescently labeled BSA. Ag retention across different organs was examined using whole-body fluorescence imaging, comparing immunized and naive animals. Various mouse models and in vivo deletion strategies were employed to determine the contribution of IgG receptors, complement component C1q, myeloid cell types, and anaphylaxis mediators. We found that following challenge, Ag diffused systemically, but specifically accumulated in the lungs of mice sensitized to that Ag, where it formed large Ab-dependent aggregates in the vasculature. Ag retention in the lungs did not rely on IgG receptors, C1q, neutrophils, or macrophages. IgG2a-mediated, but neither IgG1- nor IgG2b-mediated, passive systemic anaphylaxis led to Ag retention in the lung. Neutrophils and monocytes significantly accumulated in the lungs after challenge and captured high amounts of Ag, which led to downmodulation of surface IgG receptors and triggered their activation. Thus, within minutes of systemic injection in sensitized mice, Ag formed aggregates in the lung and liver vasculature, but accumulated specifically and dose-dependently in the lung. Neutrophils and monocytes recruited to the lung captured Ag and became activated. However, Ag aggregation in the lung vasculature was not necessary for anaphylaxis induction.


Subject(s)
Anaphylaxis , Allergens , Animals , Antigen-Antibody Complex , Complement C1q , Disease Models, Animal , Immunoglobulin G , Lung , Mice , Mice, Inbred C57BL , Receptors, Complement , Receptors, IgG
2.
J Neurosci ; 39(3): 412-419, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30523064

ABSTRACT

Autism spectrum disorders are often associated with atypical sensory processing and sensory hypersensitivity, which can lead to maladaptive behaviors, such as tactile defensiveness. Such altered sensory perception in autism spectrum disorders could arise from disruptions in experience-dependent maturation of circuits during early brain development. Here, we tested the hypothesis that synaptic structures of primary somatosensory cortex (S1) neurons in Fragile X syndrome (FXS), which is a common inherited cause of autism, are not modulated by novel sensory information during development. We used chronic in vivo two-photon microscopy to image dendritic spines and axon "en passant" boutons of layer 2/3 pyramidal neurons in S1 of male and female WT and Fmr1 KO mice, a model of FXS. We found that a brief (overnight) exposure to dramatically enhance sensory inputs in the second postnatal week led to a significant increase in spine density in WT mice, but not in Fmr1 KO mice. In contrast, axon "en passant" boutons dynamics were impervious to this novel sensory experience in mice of both genotypes. We surmise that the inability of Fmr1 KO mice to modulate postsynaptic dynamics in response to increased sensory input, at a time when sensory information processing first comes online in S1 cortex, could play a role in altered sensory processing in FXS.SIGNIFICANCE STATEMENT Very few longitudinal in vivo imaging studies have investigated synaptic structure and dynamics in early postnatal mice. Moreover, those studies tend to focus on the effects of sensory input deprivation, a process that rarely occurs during normal brain development. Early postnatal imaging experiments are critical because a variety of neurodevelopmental disorders, including those characterized by autism, could result from alterations in how circuits are shaped by incoming sensory inputs during critical periods of development. In this study, we focused on a mouse model of Fragile X syndrome and demonstrate how dendritic spines are insensitive to a brief period of novel sensory experience.


Subject(s)
Dendritic Spines/pathology , Fragile X Syndrome/pathology , Sensation , Animals , Axons/pathology , Environment , Female , Fragile X Mental Retardation Protein/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Presynaptic Terminals/pathology , Pyramidal Cells/pathology , Somatosensory Cortex/pathology , Synapses
3.
Opt Express ; 28(2): 2079-2090, 2020 Jan 20.
Article in English | MEDLINE | ID: mdl-32121906

ABSTRACT

We propose a simple and compact microscope combining phase imaging with multi-color fluorescence using a standard bright-field objective. The phase image of the sample is reconstructed from a single, approximately 100 µm out-of-focus image taken under semi-coherent illumination, while fluorescence is recorded in-focus in epi-fluorescence geometry. The reproducible changes of the focus are achieved with specifically introduced chromatic aberration in the imaging system. This allows us to move the focal plane simply by changing the imaging wavelength. No mechanical movement of neither sample nor objective or any other part of the setup is therefore required to alternate between the imaging modality. Due to its small size and the absence of motorized components the microscope can easily be used inside a standard biological incubator and allows long-term imaging of cell culture in physiological conditions. A field-of-view of 1.2 mm2 allows simultaneous observation of thousands of cells with micro-meter spatial resolution in phase and multi-channel fluorescence mode. In this manuscript we characterize the system and show a time-lapse of cell culture in phase and multi-channel fluorescence recorded inside an incubator. We believe that the small dimensions, easy usage and low cost of the system make it a useful tool for biological research.


Subject(s)
Optical Imaging , Optical Phenomena , Animals , HeLa Cells , Hippocampus/cytology , Humans , Micrococcus luteus/cytology , Microscopy, Fluorescence , Neurons/cytology
4.
Infect Immun ; 82(2): 864-72, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24478099

ABSTRACT

The dynamics of the lung immune system at the microscopic level are largely unknown because of inefficient methods of restraining chest motion during image acquisition. In this study, we developed an improved intravital method for two-photon lung imaging uniquely based on a posteriori parenchymal tissue motion correction. We took advantage of the alveolar collagen pattern given by the second harmonic generation signal as a reference for frame registration. We describe here for the first time a detailed dynamic account of two major lung immune cell populations, alveolar macrophages and CD11b-positive dendritic cells, during homeostasis and infection by spores of Bacillus anthracis, the agent of anthrax. We show that after alveolar macrophages capture spores, CD11b-positive dendritic cells come in prolonged contact with infected macrophages. Dendritic cells are known to carry spores to the draining lymph nodes and elicit the immune response in pulmonary anthrax. The intimate and long-lasting contacts between these two lines of defense may therefore coordinate immune responses in the lung through an immunological synapse-like process.


Subject(s)
Anthrax/pathology , Bacillus anthracis/immunology , Dendritic Cells/immunology , Lung/pathology , Macrophages, Alveolar/immunology , Animals , Anthrax/immunology , Lung/immunology , Mice , Microscopy, Fluorescence, Multiphoton/methods
5.
PLoS Pathog ; 8(1): e1002481, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22253596

ABSTRACT

NK cells are important immune effectors for preventing microbial invasion and dissemination, through natural cytotoxicity and cytokine secretion. Bacillus anthracis spores can efficiently drive IFN-γ production by NK cells. The present study provides insights into the mechanisms of cytokine and cellular signaling that underlie the process of NK-cell activation by B. anthracis and the bacterial strategies to subvert and evade this response. Infection with non-toxigenic encapsulated B. anthracis induced recruitment of NK cells and macrophages into the mouse draining lymph node. Production of edema (ET) or lethal (LT) toxin during infection impaired this cellular recruitment. NK cell depletion led to accelerated systemic bacterial dissemination. IFN-γ production by NK cells in response to B. anthracis spores was: i) contact-dependent through RAE-1-NKG2D interaction with macrophages; ii) IL-12, IL-18, and IL-15-dependent, where IL-12 played a key role and regulated both NK cell and macrophage activation; and iii) required IL-18 for only an initial short time window. B. anthracis toxins subverted both NK cell essential functions. ET and LT disrupted IFN-γ production through different mechanisms. LT acted both on macrophages and NK cells, whereas ET mainly affected macrophages and did not alter NK cell capacity of IFN-γ secretion. In contrast, ET and LT inhibited the natural cytotoxicity function of NK cells, both in vitro and in vivo. The subverting action of ET thus led to dissociation in NK cell function and blocked natural cytotoxicity without affecting IFN-γ secretion. The high efficiency of this process stresses the impact that this toxin may exert in anthrax pathogenesis, and highlights a potential usefulness for controlling excessive cytotoxic responses in immunopathological diseases. Our findings therefore exemplify the delicate balance between bacterial stimulation and evasion strategies. This highlights the potential implication of the crosstalk between host innate defences and B. anthracis in initial anthrax control mechanisms.


Subject(s)
Bacillus anthracis/immunology , Bacterial Toxins/pharmacology , Killer Cells, Natural/immunology , Macrophage Activation/drug effects , Macrophage Activation/immunology , Macrophages/immunology , Spores, Bacterial/immunology , Animals , Cells, Cultured , Female , Homeostasis/drug effects , Homeostasis/immunology , Immunity, Cellular/drug effects , Immunity, Cellular/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptor Cross-Talk/drug effects , Receptor Cross-Talk/immunology , Spores, Bacterial/physiology
6.
Infect Immun ; 80(1): 131-42, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22025514

ABSTRACT

The roles of interleukin-17 (IL-17) and neutrophils in the lung have been described as those of two intricate but independent players. Here we identify neutrophils as the primary IL-17-secreting subset of cells in a model of inhalation anthrax using A/J and C57BL/6 mice. With IL-17 receptor A knockout (IL-17RA-/-) mice, we confirmed that IL-17A/F signaling is instrumental in the self-recruitment of this population. We also show that the IL-17A/F axis is critical for surviving pulmonary infection, as IL-17RA-/- mice become susceptible to intranasal infection by Bacillus anthracis Sterne spores. Strikingly, infection with a fully virulent strain did not affect IL-17RA-/- mouse survival. Eventually, by depleting neutrophils in wild-type and IL-17RA-/- mice, we demonstrated the crucial role of IL-17-secreting neutrophils in mouse survival of infection by fully virulent B. anthracis. This work demonstrates the important roles of both IL-17 signaling and neutrophils in clearing this pathogen and surviving pulmonary B. anthracis infection.


Subject(s)
Anthrax/immunology , Bacillus anthracis/pathogenicity , Inhalation Exposure , Interleukin-17/metabolism , Neutrophils/immunology , Animals , Bacillus anthracis/immunology , Interleukin-17/immunology , Mice , Mice, Inbred A , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-17/deficiency , Survival Analysis
8.
Brain Struct Funct ; 223(7): 3011-3043, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29748872

ABSTRACT

Imaging the brain of living laboratory animals at a microscopic scale can be achieved by two-photon microscopy thanks to the high penetrability and low phototoxicity of the excitation wavelengths used. However, knowledge of the two-photon spectral properties of the myriad fluorescent probes is generally scarce and, for many, non-existent. In addition, the use of different measurement units in published reports further hinders the design of a comprehensive imaging experiment. In this review, we compile and homogenize the two-photon spectral properties of 280 fluorescent probes. We provide practical data, including the wavelengths for optimal two-photon excitation, the peak values of two-photon action cross section or molecular brightness, and the emission ranges. Beyond the spectroscopic description of these fluorophores, we discuss their binding to biological targets. This specificity allows in vivo imaging of cells, their processes, and even organelles and other subcellular structures in the brain. In addition to probes that monitor endogenous cell metabolism, studies of healthy and diseased brain benefit from the specific binding of certain probes to pathology-specific features, ranging from amyloid-ß plaques to the autofluorescence of certain antibiotics. A special focus is placed on functional in vivo imaging using two-photon probes that sense specific ions or membrane potential, and that may be combined with optogenetic actuators. Being closely linked to their use, we examine the different routes of intravital delivery of these fluorescent probes according to the target. Finally, we discuss different approaches, strategies, and prerequisites for two-photon multicolor experiments in the brains of living laboratory animals.


Subject(s)
Brain Diseases/metabolism , Brain Diseases/pathology , Brain/metabolism , Brain/pathology , Fluorescent Dyes/administration & dosage , Genes, Reporter , Luminescent Proteins/metabolism , Microscopy, Fluorescence, Multiphoton , Signal Transduction , Voltage-Sensitive Dye Imaging , Animals , Calcium Signaling , Image Processing, Computer-Assisted , Luminescent Proteins/genetics , Membrane Potentials , Reproducibility of Results
9.
J Biophotonics ; 9(9): 868-78, 2016 09.
Article in English | MEDLINE | ID: mdl-26846880

ABSTRACT

In vivo microscopy has recently become a gold standard in lung immunology studies involving small animals, largely benefiting from the democratization of multiphoton microscopy allowing for deep tissue imaging. This technology represents currently our only way of exploring the lungs and inferring what happens in human respiratory medicine. The interest of lung in vivo microscopy essentially relies upon its relevance as a study model, fulfilling physiological requirements in comparison with in vitro and ex vivo experiments. However, strategies developed in order to overcome movements of the thorax caused by breathing and heartbeats remain the chief drawback of the technique and a major source of invasiveness. In this context, minimizing invasiveness is an unavoidable prerequisite for any improvement of lung in vivo microscopy. This review puts into perspective the main techniques enabling lung in vivo microscopy, providing pros and cons regarding invasiveness.


Subject(s)
Intravital Microscopy , Lung/diagnostic imaging , Animals , Humans
10.
PLoS One ; 7(6): e39831, 2012.
Article in English | MEDLINE | ID: mdl-22745831

ABSTRACT

Dendritic Cells (DC) represent a key lung immune cell population, which play a critical role in the antigen presenting process and initiation of the adaptive immune response. The study of DCs has largely benefited from the joint development of fluorescence microscopy and knock-in technology, leading to several mouse strains with constitutively labeled DC subsets. However, in the lung most transgenic mice do express fluorescent protein not only in DCs, but also in closely related cell lineages such as monocytes and macrophages. As an example, in the lungs of CX(3)CR1(+/gfp) mice the green fluorescent protein is expressed mostly by both CD11b conventional DCs and resident monocytes. Despite this non-specific staining, we show that a shape criterion can discriminate these two particular subsets. Implemented in a cell tracking code, this quantified criterion allows us to analyze the specific behavior of DCs under inflammatory conditions mediated by lipopolysaccharide on lung explants. Compared to monocytes, we show that DCs move slower and are more confined, while both populations do not have any chemotactism-associated movement. We could generalize from these results that DCs can be automatically discriminated from other round-shaped cells expressing the same fluorescent protein in various lung inflammation models.


Subject(s)
Dendritic Cells/cytology , Dendritic Cells/metabolism , Green Fluorescent Proteins/metabolism , Lung/cytology , Animals , CD11b Antigen/metabolism , Flow Cytometry , Green Fluorescent Proteins/genetics , Lung/immunology , Macrophages/cytology , Macrophages/metabolism , Mice , Mice, Transgenic , Monocytes/cytology , Monocytes/metabolism , Pneumonia/immunology , Pneumonia/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL