Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Eukaryot Microbiol ; 71(4): e13035, 2024.
Article in English | MEDLINE | ID: mdl-38825738

ABSTRACT

The phylum Parabasalia includes very diverse single-cell organisms that nevertheless share a distinctive set of morphological traits. Most are harmless or beneficial gut symbionts of animals, but some have turned into parasites in other body compartments, the most notorious example being Trichomonas vaginalis in humans. Parabasalians have garnered attention for their nutritional symbioses with termites, their modified anaerobic mitochondria (hydrogenosomes), their character evolution, and the wholly unique features of some species. The molecular revolution confirmed the monophyly of Parabasalia, but considerably changed our view of their internal relationships, prompting a comprehensive reclassification 14 years ago. This classification has remained authoritative for many subgroups despite a greatly expanded pool of available data, but the large number of species and sequences that have since come out allow for taxonomic refinements in certain lineages, which we undertake here. We aimed to introduce as little disruption as possible but at the same time ensure that most taxa are truly monophyletic, and that the larger clades are subdivided into meaningful units. In doing so, we also highlighted correlations between the phylogeny of parabasalians and that of their hosts.


Subject(s)
Phylogeny , Animals , Parabasalidea/classification , Parabasalidea/genetics , Symbiosis
2.
J Eukaryot Microbiol ; 70(5): e12987, 2023.
Article in English | MEDLINE | ID: mdl-37282792

ABSTRACT

Most Parabasalia are symbionts in the hindgut of "lower" (non-Termitidae) termites, where they widely vary in morphology and degree of morphological complexity. Large and complex cells in the class Cristamonadea evolved by replicating a fundamental unit, the karyomastigont, in various ways. We describe here four new species of Calonymphidae (Cristamonadea) from Rugitermes hosts, assigned to the genus Snyderella based on diagnostic features (including the karyomastigont pattern) and molecular phylogeny. We also report a new genus of Calonymphidae, Daimonympha, from Rugitermes laticollis. Daimonympha's morphology does not match that of any known Parabasalia, and its SSU rRNA gene sequence corroborates this distinction. Daimonympha does however share a puzzling feature with a few previously described, but distantly related, Cristamonadea: a rapid, smooth, and continuous rotation of the anterior end of the cell, including the many karyomastigont nuclei. The function of this rotatory movement, the cellular mechanisms enabling it, and the way the cell deals with the consequent cell membrane shear, are all unknown. "Rotating wheel" structures are famously rare in biology, with prokaryotic flagella being the main exception; these mysterious spinning cells found only among Parabasalia are another, far less understood, example.


Subject(s)
Isoptera , Parabasalidea , Animals , Phylogeny , South America
3.
Int J Syst Evol Microbiol ; 67(9): 3570-3575, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28840814

ABSTRACT

Members of the genus Trichonympha are among the most well-known, recognizable and widely distributed parabasalian symbionts of lower termites and the wood-eating cockroach species of the genus Cryptocercus. Nevertheless, the species diversity of this genus is largely unknown. Molecular data have shown that the superficial morphological similarities traditionally used to identify species are inadequate, and have challenged the view that the same species of the genus Trichonympha can occur in many different host species. Ambiguities in the literature, uncertainty in identification of both symbiont and host, and incomplete samplings are limiting our understanding of the systematics, ecology and evolution of this taxon. Here we describe four closely related novel species of the genus Trichonympha collected from South American and Australian lower termites: Trichonympha hueyi sp. nov. from Rugitermes laticollis, Trichonympha deweyi sp. nov. from Glyptotermes brevicornis, Trichonympha louiei sp. nov. from Calcaritermes temnocephalus and Trichonympha webbyae sp. nov. from Rugitermes bicolor. We provide molecular barcodes to identify both the symbionts and their hosts, and infer the phylogeny of the genus Trichonympha based on small subunit rRNA gene sequences. The analysis confirms the considerable divergence of symbionts of members of the genus Cryptocercus, and shows that the two clades of the genus Trichonympha harboured by termites reflect only in part the phylogeny of their hosts.


Subject(s)
Digestive System/microbiology , Hypermastigia/classification , Isoptera/microbiology , Phylogeny , Animals , Australia , Base Composition , Ecuador , Hypermastigia/genetics , Hypermastigia/isolation & purification , Peru , RNA, Protozoan/genetics , RNA, Ribosomal/genetics , Sequence Analysis, DNA , Symbiosis
4.
Sci Rep ; 11(1): 7270, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790354

ABSTRACT

Cristamonadea is a large class of parabasalian protists that reside in the hindguts of wood-feeding insects, where they play an essential role in the digestion of lignocellulose. This group of symbionts boasts an impressive array of complex morphological characteristics, many of which have evolved multiple times independently. However, their diversity is understudied and molecular data remain scarce. Here we describe seven new species of cristamonad symbionts from Comatermes, Calcaritermes, and Rugitermes termites from Peru and Ecuador. To classify these new species, we examined cells by light and scanning electron microscopy, sequenced the symbiont small subunit ribosomal RNA (rRNA) genes, and carried out barcoding of the mitochondrial large subunit rRNA gene of the hosts to confirm host identification. Based on these data, five of the symbionts characterized here represent new species within described genera: Devescovina sapara n. sp., Devescovina aymara n. sp., Macrotrichomonas ashaninka n. sp., Macrotrichomonas secoya n. sp., and Macrotrichomonas yanesha n. sp. Additionally, two symbionts with overall morphological characteristics similar to the poorly-studied and probably polyphyletic 'joeniid' Parabasalia are classified in a new genus Runanympha n. gen.: Runanympha illapa n. sp., and Runanympha pacha n. sp.


Subject(s)
Isoptera , Parabasalidea , Symbiosis , Animals , Parabasalidea/classification , Parabasalidea/physiology
5.
Sci Rep ; 7(1): 16349, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29180788

ABSTRACT

Pseudotrichonympha is a large and structurally complex genus of parabasalian protists that play a key role in the digestion of lignocellulose in the termite hindgut. Like many termite symbionts, it has a conspicuous body plan that makes genus-level identification relatively easy, but species-level diversity of Pseudotrichonympha is understudied. Molecular surveys have suggested the diversity is much greater than the current number of described species, and that many "species" described in multiple hosts are in fact different, but gene sequences from formally described species remain a rarity. Here we describe three new species from Coptotermes and Prorhinotermes hosts, including small subunit ribosomal RNA (SSU rRNA) sequences from single cells. Based on host identification by morphology and DNA barcoding, as well as the morphology and phylogenetic position of each symbiont, all three represent new Pseudotrichonympha species: P. leei, P. lifesoni, and P. pearti. Pseudotrichonympha leei and P. lifesoni, both from Coptotermes, are closely related to other Coptotermes symbionts including the type species, P. hertwigi. Pseudotrichonympha pearti is the outlier of the trio, more distantly related to P. leei and P. lifesoni than they are to one another, and contains unique features, including an unusual rotating intracellular structure of unknown function.


Subject(s)
Parabasalidea/classification , Parabasalidea/cytology , Animals , Genes, Protozoan , Isoptera/parasitology , Microscopy , Parabasalidea/physiology , Phylogeny , RNA, Ribosomal/genetics
SELECTION OF CITATIONS
SEARCH DETAIL