Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Cell ; 171(2): 385-397.e11, 2017 Oct 05.
Article in English | MEDLINE | ID: mdl-28919076

ABSTRACT

T cell receptor (TCR) signaling without CD28 can elicit primary effector T cells, but memory T cells generated during this process are anergic, failing to respond to secondary antigen exposure. We show that, upon T cell activation, CD28 transiently promotes expression of carnitine palmitoyltransferase 1a (Cpt1a), an enzyme that facilitates mitochondrial fatty acid oxidation (FAO), before the first cell division, coinciding with mitochondrial elongation and enhanced spare respiratory capacity (SRC). microRNA-33 (miR33), a target of thioredoxin-interacting protein (TXNIP), attenuates Cpt1a expression in the absence of CD28, resulting in cells that thereafter are metabolically compromised during reactivation or periods of increased bioenergetic demand. Early CD28-dependent mitochondrial engagement is needed for T cells to remodel cristae, develop SRC, and rapidly produce cytokines upon restimulation-cardinal features of protective memory T cells. Our data show that initial CD28 signals during T cell activation prime mitochondria with latent metabolic capacity that is essential for future T cell responses.


Subject(s)
CD28 Antigens/metabolism , Lymphocyte Activation , Mitochondria/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Animals , Carnitine O-Palmitoyltransferase , Enzyme Inhibitors/pharmacology , Epoxy Compounds/pharmacology , Humans , Interleukin-15/immunology , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/metabolism , Stress, Physiological , T-Lymphocytes/metabolism
2.
Cancer Immunol Immunother ; 69(9): 1823-1832, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32350591

ABSTRACT

Radiotherapy can elicit abscopal effects in non-irradiated metastases, particularly under immune checkpoint blockade (ICB). We report on two elderly patients with oligometastatic melanoma treated with anti-PD-1 and stereotactic body radiation therapy (SBRT). Before treatment, patient 1 showed strong tumor infiltration with exhausted CD8+ T cells and high expression of T cell-attracting chemokines. This patient rapidly mounted a complete response, now ongoing for more than 4.5 years. Patient 2 exhibited low CD8+ T cell infiltration and high expression of immunosuppressive arginase. After the first SBRT, his non-irradiated metastases did not regress and new metastases occurred although neoepitope-specific and differentiation antigen-specific CD8+ T cells were detected in the blood. A second SBRT after 10 months on anti-PD-1 induced a radiologic complete response correlating with an increase in activated PD-1-expressing CD8 T cells. Apart from a new lung lesion, which was also irradiated, this deep abscopal response lasted for more than 2.5 years. However, thereafter, his disease progressed and the activated PD-1-expressing CD8 T cells dropped. Our data suggest that oligometastatic patients, where a large proportion of the tumor mass can be irradiated, are good candidates to improve ICB responses by RT, even in the case of an unfavorable pretreatment immune signature, after progression on anti-PD-1, and despite advanced age. Besides repeated irradiation, T cell epitope-based immunotherapies (e.g., vaccination) may prolong antitumor responses even in patients with unfavorable pretreatment immune signature.


Subject(s)
Melanoma/immunology , Melanoma/radiotherapy , Programmed Cell Death 1 Receptor/immunology , Aged , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Female , Humans , Immunotherapy/methods , Male , Melanoma/therapy , Radiosurgery/methods
3.
Blood ; 125(5): 753-61, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25414442

ABSTRACT

Autoimmune cytopenia is a frequent manifestation of primary immunodeficiencies. Two siblings presented with Evans syndrome, viral infections, and progressive leukopenia. DNA available from one patient showed a homozygous frameshift mutation in tripeptidyl peptidase II (TPP2) abolishing protein expression. TPP2 is a serine exopeptidase involved in extralysosomal peptide degradation. Its deficiency in mice activates cell death programs and premature senescence. Similar to cells from naïve, uninfected TPP2-deficient mice, patient cells showed increased major histocompatibility complex I expression and most CD8(+) T-cells had a senescent CCR7-CD127(-)CD28(-)CD57(+) phenotype with poor proliferative responses and enhanced staurosporine-induced apoptosis. T-cells showed increased expression of the effector molecules perforin and interferon-γ with high expression of the transcription factor T-bet. Age-associated B-cells with a CD21(-) CD11c(+) phenotype expressing T-bet were increased in humans and mice, combined with antinuclear antibodies. Moreover, markers of senescence were also present in human and murine TPP2-deficient fibroblasts. Telomere lengths were normal in patient fibroblasts and granulocytes, and low normal in lymphocytes, which were compatible with activation of stress-induced rather than replicative senescence programs. TPP2 deficiency is the first primary immunodeficiency linking premature immunosenescence to severe autoimmunity. Determination of senescent lymphocytes should be part of the diagnostic evaluation of children with refractory multilineage cytopenias.


Subject(s)
Aging/immunology , Aminopeptidases/immunology , Anemia, Hemolytic, Autoimmune/genetics , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/immunology , Frameshift Mutation , Immunologic Deficiency Syndromes/genetics , Serine Endopeptidases/immunology , Thrombocytopenia/genetics , Aminopeptidases/deficiency , Aminopeptidases/genetics , Anemia, Hemolytic, Autoimmune/complications , Anemia, Hemolytic, Autoimmune/immunology , Anemia, Hemolytic, Autoimmune/pathology , Animals , Apoptosis , Base Sequence , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Child , Child, Preschool , Consanguinity , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/deficiency , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Female , Fibroblasts/immunology , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression , Humans , Immunologic Deficiency Syndromes/complications , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/pathology , Male , Mice , Mice, Knockout , Molecular Sequence Data , Perforin/genetics , Perforin/immunology , Serine Endopeptidases/deficiency , Serine Endopeptidases/genetics , Siblings , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Thrombocytopenia/complications , Thrombocytopenia/immunology , Thrombocytopenia/pathology
4.
Proc Natl Acad Sci U S A ; 111(6): E692-701, 2014 Feb 11.
Article in English | MEDLINE | ID: mdl-24469819

ABSTRACT

A technology that visualizes tumor stem cells with clinically relevant tracers could have a broad impact on cancer diagnosis and treatment. The AC133 epitope of CD133 currently is one of the best-characterized tumor stem cell markers for many intra- and extracranial tumor entities. Here we demonstrate the successful noninvasive detection of AC133(+) tumor stem cells by PET and near-infrared fluorescence molecular tomography in subcutaneous and orthotopic glioma xenografts using antibody-based tracers. Particularly, microPET with (64)Cu-NOTA-AC133 mAb yielded high-quality images with outstanding tumor-to-background contrast, clearly delineating subcutaneous tumor stem cell-derived xenografts from surrounding tissues. Intracerebral tumors as small as 2-3 mm also were clearly discernible, and the microPET images reflected the invasive growth pattern of orthotopic cancer stem cell-derived tumors with low density of AC133(+) cells. These data provide a basis for further preclinical and clinical use of the developed tracers for high-sensitivity and high-resolution monitoring of AC133(+) tumor stem cells.


Subject(s)
Antigens, CD/immunology , Glycoproteins/immunology , Neoplastic Stem Cells/immunology , Peptides/immunology , Positron-Emission Tomography/methods , AC133 Antigen , Animals , Brain Neoplasms/diagnostic imaging , Fluorescence , Glioblastoma/diagnostic imaging , Heterografts , Mice , Multimodal Imaging , Tomography, X-Ray Computed
5.
EMBO J ; 30(4): 770-82, 2011 Feb 16.
Article in English | MEDLINE | ID: mdl-21224848

ABSTRACT

Notch signalling is important for development and tissue homeostasis and activated in many human cancers. Nevertheless, mutations in Notch pathway components are rare in solid tumours. ZEB1 is an activator of an epithelial-mesenchymal transition (EMT) and has crucial roles in tumour progression towards metastasis. ZEB1 and miR-200 family members repress expression of each other in a reciprocal feedback loop. Since miR-200 members target stem cell factors, ZEB1 indirectly induces stemness maintenance and associated drug resistance. Here, we link ZEB1 and its cancer promoting properties to Notch activation. We show that miR-200 members target Notch pathway components, such as Jagged1 (Jag1) and the mastermind-like coactivators Maml2 and Maml3, thereby mediating enhanced Notch activation by ZEB1. We further detected a coordinated upregulation of Jag1 and ZEB1, associated with reduced miR-200 expression in two aggressive types of human cancer, pancreatic adenocarcinoma and basal type of breast cancer. These findings explain increased Notch signalling in some types of cancers, where mutations in Notch pathway genes are rare. Moreover, they indicate an additional way how ZEB1 exerts its tumour progressing functions.


Subject(s)
Homeodomain Proteins/physiology , MicroRNAs/physiology , Neoplasms/genetics , Receptors, Notch/metabolism , Transcription Factors/physiology , Base Sequence , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/physiology , Cells, Cultured , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Feedback, Physiological/physiology , Gene Knockdown Techniques , Homeodomain Proteins/antagonists & inhibitors , Homeodomain Proteins/genetics , Humans , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Intercellular Signaling Peptides and Proteins/physiology , Jagged-1 Protein , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/physiology , MicroRNAs/genetics , Models, Biological , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Receptors, Notch/genetics , Serrate-Jagged Proteins , Signal Transduction/genetics , Signal Transduction/physiology , Trans-Activators , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc Finger E-box-Binding Homeobox 1
6.
Strahlenther Onkol ; 190(10): 957-61, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24928248

ABSTRACT

BACKGROUND: Treatment of recurrent glioblastoma (rGBM) remains an unsolved clinical problem. Reirradiation (re-RT) can be used to treat some patients with rGBM, but as a monotherapy it has only limited efficacy. Chloroquine (CQ) is an anti-malaria and immunomodulatory drug that may inhibit autophagy and increase the radiosensitivity of GBM. PATIENTS AND METHODS: Between January 2012 and August 2013, we treated five patients with histologically confirmed rGBM with re-RT and 250 mg CQ daily. RESULTS: Treatment was very well tolerated; no CQ-related toxicity was observed. At the first follow-up 2 months after finishing re-RT, two patients achieved partial response (PR), one patient stable disease (SD), and one patient progressive disease (PD). One patient with reirradiated surgical cavity did not show any sign of PD. CONCLUSION: In this case series, we observed encouraging responses to CQ and re-RT. We plan to conduct a CQ dose escalation study combined with re-RT.


Subject(s)
Brain Neoplasms/radiotherapy , Chloroquine/therapeutic use , Glioblastoma/radiotherapy , Neoplasm Recurrence, Local/prevention & control , Positron-Emission Tomography/methods , Radiotherapy, Image-Guided/methods , Tyrosine/analogs & derivatives , Adult , Brain Neoplasms/diagnostic imaging , Chloroquine/adverse effects , Feasibility Studies , Female , Glioblastoma/diagnostic imaging , Humans , Male , Middle Aged , Neoplasm Recurrence, Local/diagnostic imaging , Pilot Projects , Radiation-Sensitizing Agents , Radiopharmaceuticals , Radiotherapy Dosage , Treatment Outcome
7.
Theranostics ; 14(6): 2573-2588, 2024.
Article in English | MEDLINE | ID: mdl-38646638

ABSTRACT

Background: Hypofractionated radiotherapy (hRT) can induce a T cell-mediated abscopal effect on non-irradiated tumor lesions, especially in combination with immune checkpoint blockade (ICB). However, clinically, this effect is still rare, and ICB-mediated adverse events are common. Lenalidomide (lena) is an anti-angiogenic and immunomodulatory drug used in the treatment of hematologic malignancies. We here investigated in solid tumor models whether lena can enhance the abscopal effect in double combination with hRT. Methods: In two syngeneic bilateral tumor models (B16-CD133 melanoma and MC38 colon carcinoma), the primary tumor was treated with hRT. Lena was given daily for 3 weeks. Besides tumor size and survival, the dependence of the antitumor effects on CD8+ cells, type-I IFN signaling, and T cell costimulation was determined with depleting or blocking antibodies. Tumor-specific CD8+ T cells were quantified, and their differentiation and effector status were characterized by multicolor flow cytometry using MHC-I tetramers and various antibodies. In addition, dendritic cell (DC)-mediated tumor antigen cross-presentation in vitro and directly ex vivo and the composition of tumor-associated vascular endothelial cells were investigated. Results: In both tumor models, the hRT/lena double combination induced a significant abscopal effect. Control of the non-irradiated secondary tumor and survival were considerably better than with the respective monotherapies. The abscopal effect was strongly dependent on CD8+ cells and associated with an increase in tumor-specific CD8+ T cells in the non-irradiated tumor and its draining lymph nodes. Additionally, we found more tumor-specific T cells with a stem-like (TCF1+ TIM3- PD1+) and a transitory (TCF1- TIM3+ CD101- PD1+) exhausted phenotype and more expressing effector molecules such as GzmB, IFNγ, and TNFα. Moreover, in the non-irradiated tumor, hRT/lena treatment also increased DCs cross-presenting a tumor model antigen. Blocking type-I IFN signaling, which is essential for cross-presentation, completely abrogated the abscopal effect. A gene expression analysis of bone marrow-derived DCs revealed that lena augmented the expression of IFN response genes and genes associated with differentiation, maturation (including CD70, CD83, and CD86), migration to lymph nodes, and T cell activation. Flow cytometry confirmed an increase in CD70+ CD83+ CD86+ DCs in both irradiated and abscopal tumors. Moreover, the hRT/lena-induced abscopal effect was diminished when these costimulatory molecules were blocked simultaneously using antibodies. In line with the enhanced infiltration by DCs and tumor-specific CD8+ T cells, including more stem-like cells, hRT/lena also increased tumor-associated high endothelial cells (TA-HECs) in the non-irradiated tumor. Conclusions: We demonstrate that lena can augment the hRT-induced abscopal effect in mouse solid tumor models in a CD8 T cell- and IFN-I-dependent manner, correlating with enhanced anti-tumor CD8 T cell immunity, DC cross-presentation, and TA-HEC numbers. Our findings may be helpful for the planning of clinical trials in (oligo)metastatic patients.


Subject(s)
CD8-Positive T-Lymphocytes , Disease Models, Animal , Lenalidomide , Radiation Dose Hypofractionation , Animals , Lenalidomide/pharmacology , Lenalidomide/therapeutic use , Mice , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/drug effects , Mice, Inbred C57BL , Dendritic Cells/immunology , Dendritic Cells/drug effects , Cell Line, Tumor , Combined Modality Therapy/methods , Female , Melanoma, Experimental/drug therapy , Melanoma, Experimental/immunology , Melanoma, Experimental/radiotherapy , Melanoma, Experimental/therapy , Colonic Neoplasms/immunology , Colonic Neoplasms/radiotherapy , Colonic Neoplasms/drug therapy , Colonic Neoplasms/therapy
8.
Clin Cancer Res ; 29(3): 667-683, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36449659

ABSTRACT

PURPOSE: Cisplatin is increasingly used in chemoimmunotherapy and may enhance the T cell-dependent radiation-induced abscopal effect, but how it promotes antitumor immunity is poorly understood. We investigated whether and why cisplatin is immunogenic, and the implications for the cisplatin-enhanced abscopal effect. EXPERIMENTAL DESIGN: Cisplatin, carboplatin, and the well-known immunogenic cell death (ICD) inducer oxaliplatin were compared for their potency to enhance the abscopal effect and induce type I IFN (IFN-I) and extracellular ATP, danger signals of ICD. The hypothetical role of necroptosis and associated damage-associated molecular patterns for cisplatin-induced ICD was investigated by inhibitors and knockout cells in vitro and in two tumor models in mice. A novel necroptosis signature for tumor immune cell infiltration and therapy response was developed. RESULTS: Cisplatin enhanced the abscopal effect more strongly than oxaliplatin or carboplatin. This correlated with higher induction of IFN-I and extracellular ATP by cisplatin, in a necroptosis-dependent manner. Cisplatin triggered receptor-interacting protein kinase 3 (RIPK3)-dependent tumor cell necroptosis causing cytosolic mitochondrial DNA (mtDNA) release, initiating the cyclic GMP-AMP synthase-stimulator of interferon genes pathway and IFN-I secretion promoting T-cell cross-priming by dendritic cells (DC). Accordingly, tumor cell RIPK3 or mtDNA deficiency and loss of IFN-I or ATP signaling diminished the cisplatin-enhanced abscopal effect. Cisplatin-treated tumor cells were immunogenic in vaccination experiments, depending on RIPK3 and mtDNA. In human tumor transcriptome analysis, necroptotic features correlated with abundant CD8+ T cells/DCs, sparse immunosuppressive cells, and immunotherapy response. CONCLUSIONS: Cisplatin induces antitumor immunity through necroptosis-mediated ICD. Our findings may help explain the benefits of cisplatin in chemo(radio)immunotherapies and develop clinical trials to investigate whether cisplatin enhances the abscopal effect in patients.


Subject(s)
Antineoplastic Agents , Neoplasms , Humans , Mice , Animals , Cisplatin/pharmacology , Oxaliplatin/pharmacology , Carboplatin , Necroptosis , Antineoplastic Agents/pharmacology , Neoplasms/drug therapy , DNA, Mitochondrial , Adenosine Triphosphate
9.
Nat Commun ; 14(1): 2087, 2023 04 12.
Article in English | MEDLINE | ID: mdl-37045833

ABSTRACT

Combination of radiation therapy (RT) with immune checkpoint blockade can enhance systemic anti-tumor T cell responses. Here, using two mouse tumor models, we demonstrate that adding long-acting CD122-directed IL-2 complexes (IL-2c) to RT/anti-PD1 further increases tumor-specific CD8+ T cell numbers. The highest increase (>50-fold) is found in the blood circulation. Compartmental analysis of exhausted T cell subsets shows that primarily undifferentiated, stem-like, tumor-specific CD8+ T cells expand in the blood; these cells express the chemokine receptor CXCR3, which is required for migration into tumors. In tumor tissue, effector-like but not terminally differentiated exhausted CD8+ T cells increase. Consistent with the surge in tumor-specific CD8+ T cells in blood that are migration and proliferation competent, we observe a CD8-dependent and CXCR3-dependent enhancement of the abscopal effect against distant/non-irradiated tumors and find that CD8+ T cells isolated from blood after RT/anti-PD1/IL-2c triple treatment can be a rich source of tumor-specific T cells for adoptive transfers.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Mice , Animals , Interleukin-2 , Neoplasms/radiotherapy , T-Lymphocyte Subsets , Antibodies , Disease Models, Animal
10.
J Immunother Cancer ; 11(8)2023 08.
Article in English | MEDLINE | ID: mdl-37640480

ABSTRACT

BACKGROUND: Localized radiotherapy (RT) can cause a T cell-mediated abscopal effect on non-irradiated tumor lesions, especially in combination with immune checkpoint blockade. However, this effect is still clinically rare and improvements are highly desirable. We investigated whether triple combination with a low dose of clinically approved liposomal doxorubicin (Doxil) could augment abscopal responses compared with RT/αPD-1 and Doxil/αPD-1. We also investigated whether the enhanced abscopal responses depended on the mitochondrial DNA (mtDNA)/cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING)/IFN-I pathway. MATERIALS/METHODS: We used Doxil in combination with RT and αPD-1 in two tumor models (B16-CD133 melanoma and MC38 colon carcinoma) with mice bearing two tumors, only one of which was irradiated. Mechanistic studies on the role of the mtDNA/cGAS/STING/IFN-I axis were performed using inhibitors and knockout cells in vitro as well as in mice. RESULTS: Addition of a single low dose of Doxil to RT and αPD-1 strongly enhanced the RT/αPD-1-induced abscopal effect in both models. Complete cures of non-irradiated tumors were mainly observed in triple-treated mice. Triple therapy induced more cross-presenting dendritic cells (DCs) and more tumor-specific CD8+ T cells than RT/αPD-1 and Doxil/αPD-1, particularly in non-irradiated tumors. Coincubation of Doxil-treated and/or RT-treated tumor cells with DCs enhanced DC antigen cross-presentation which is crucial for inducing CD8+ T cells. CD8+ T cell depletion or implantation of cGAS-deficient or STING-deficient tumor cells abolished the abscopal effect. Doxorubicin-induced/Doxil-induced IFNß1 markedly depended on the cGAS/STING pathway. Doxorubicin-treated/Doxil-treated tumor cells depleted of mtDNA secreted less IFNß1, of the related T cell-recruiting chemokine CXCL10, and ATP; coincubation with mtDNA-depleted tumor cells strongly reduced IFNß1 secretion by DCs. Implantation of mtDNA-depleted tumor cells, particularly at the non-irradiated/abscopal site, substantially diminished the Doxil-enhanced abscopal effect and tumor infiltration by tumor-specific CD8+ T cells. CONCLUSIONS: These data show that single low-dose Doxil can substantially enhance the RT/αPD-1-induced abscopal effect, with a strong increase in cross-presenting DCs and CD8+ tumor-specific T cells particularly in abscopal tumors compared with RT/αPD-1 and Doxil/αPD-1. Moreover, they indicate that the mtDNA/cGAS/STING/IFN-I axis is important for the immunogenic/immunomodulatory doxorubicin effects. Our findings may be helpful for the planning of clinical radiochemoimmunotherapy trials in (oligo)metastatic patients.


Subject(s)
CD8-Positive T-Lymphocytes , DNA, Mitochondrial , Animals , Mice , DNA, Mitochondrial/genetics , Mitochondria , Doxorubicin/pharmacology , Doxorubicin/therapeutic use
11.
NPJ Precis Oncol ; 7(1): 24, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36864234

ABSTRACT

We performed a prospective study of circulating immune cell changes after stereotactic body radiotherapy (SBRT) in 50 early-stage NSCLC patients. We found no significant increase in CD8+ cytotoxic T lymphocytes at first follow-up (the primary endpoint) but detected a significant increase in expanding Ki-67+CD8+ and Ki-67+CD4+ T-cell fractions in patients treated with 10 Gy or less per fraction. SBRT can induce significant expansion in circulating effector T-cells immediately post-treatment.

12.
Res Sq ; 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-38014120

ABSTRACT

We prospectively evaluated the effects of stereotactic body radiotherapy (SBRT) on circulating immune cells. Patients with oligo-metastatic and oligo-progressive pulmonary lesions were treated with SBRT with (cSBRT) or without (SBRT group) concurrent systemic treatment (chemotherapy or immune checkpoint blockade) using different fractionation regimes. Immunoprofiling of peripheral blood cells was performed at baseline, during, at the end of SBRT, and at the first and second follow-ups. The study accrued 100 patients (80 with evaluable samples). The proportion of proliferating CD8+ T-cells significantly increased after treatment. This increase remained significant at follow-up in the SBRT group, but not in the cSBRT group and was not detected with doses of >10Gy per fraction indicating that lower doses are necessary to increase proliferating T-cells' frequency. We detected no favorable impact of concurrent systemic treatment on systemic immune responses. The optimal timing of systemic treatment may be post-SBRT to leverage the immune-modulating effects of SBRT.

13.
Cancer Lett ; 537: 215680, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35461758

ABSTRACT

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. Following the publication of the above article, the Editor was notified that an error occurred in which all images were published with incorrect versions. The Editor has taken the decision that the manuscript is no longer acceptable in its current form, nor with a corrigendum, as the extensive changes to the figures and publication would lead to ambiguity for our readers. We have therefore made the decision to retract this manuscript from Cancer Letters with the possibility of resubmission and republication of the manuscript in its corrected form after peer review.

14.
Cancer Lett ; 538: 215697, 2022 07 10.
Article in English | MEDLINE | ID: mdl-35487310

ABSTRACT

Metastatic small cell lung cancer (SCLC) is not curable. While SCLC is initially sensitive to chemotherapy, remissions are short-lived. The relapse is induced by chemotherapy-selected tumor stem cells, which express the AC133 epitope of the CD133 stem cell marker. We studied the effectiveness of AC133-specific CAR T cells post-chemotherapy using human primary SCLC and an orthotopic xenograft mouse model. AC133-specific CAR T cells migrated to SCLC tumor lesions, reduced the tumor burden, and prolonged survival in a humanized orthotopic SCLC model, but were not able to entirely eliminate tumors. We identified CD73 and PD-L1 as immune-escape mechanisms and combined PD-1-inhibition and CD73-inhibition with CAR T cell treatment. This triple-immunotherapy induced cures in 25% of the mice, without signs of graft-versus-host disease or bone marrow failure. AC133+ cancer stem cells and PD-L1+CD73+ myeloid cells were detectable in primary human SCLC tissues, suggesting that patients may benefit from the triple-immunotherapy. We conclude that the combination of AC133-specific CAR T cells, anti-PD-1-antibody and CD73-inhibitor specifically eliminates chemo-resistant tumor stem cells, overcomes SCLC-mediated T cell inhibition, and might induce long-term complete remission in an otherwise incurable disease.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Animals , B7-H1 Antigen , Cell Line, Tumor , Humans , Immunotherapy, Adoptive , Lung Neoplasms/pathology , Mice , Neoplasm Recurrence, Local , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/therapy
15.
Proc Natl Acad Sci U S A ; 105(13): 5177-82, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18362329

ABSTRACT

The giant cytosolic protease tripeptidyl peptidase II (TPPII) has been implicated in the regulation of proliferation and survival of malignant cells, particularly lymphoma cells. To address its functions in normal cellular and systemic physiology we have generated TPPII-deficient mice. TPPII deficiency activates cell type-specific death programs, including proliferative apoptosis in several T lineage subsets and premature cellular senescence in fibroblasts and CD8(+) T cells. This coincides with up-regulation of p53 and dysregulation of NF-kappaB. Prominent degenerative alterations at the organismic level were a decreased lifespan and symptoms characteristic of immunohematopoietic senescence. These symptoms include accelerated thymic involution, lymphopenia, impaired proliferative T cell responses, extramedullary hematopoiesis, and inflammation. Thus, TPPII is important for maintaining normal cellular and systemic physiology, which may be relevant for potential therapeutic applications of TPPII inhibitors.


Subject(s)
Aging/immunology , Apoptosis/immunology , Serine Endopeptidases/deficiency , Serine Endopeptidases/metabolism , Aminopeptidases , Animals , Cell Differentiation/immunology , Cells, Cultured , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Fibroblasts , Gene Deletion , Lymphopenia/enzymology , Lymphopenia/genetics , Lymphopenia/pathology , Mice , Mice, Knockout , NF-kappa B/metabolism , Phenotype , Serine Endopeptidases/genetics , T-Lymphocytes/cytology , T-Lymphocytes/enzymology , T-Lymphocytes/immunology , Thymus Gland/cytology , Thymus Gland/enzymology , Thymus Gland/immunology , Tumor Suppressor Protein p53/metabolism
16.
Cancers (Basel) ; 13(22)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34830880

ABSTRACT

The effects of radiotherapy on systemic immunity remain to be fully characterized in a disease-specific manner. The aim of the study was to examine potential biomarkers of systemic immunomodulation when using radiotherapy for thoracic malignancies. Serial blood samples were collected from 56 patients with thoracic malignancies prior (RTbaseline), during (RTduring) and at the end of radiotherapy (RTend), as well as at the first (FU1) and second follow-up (FU2). The changes in serum levels of IL-10, IFN-γ, IL-12p70, IL-13, IL-1ß, IL-4, IL-6, IL-8, TNF-α, bFGF, sFlt-1, PlGF, VEGF, VEGF-C, VEGF-D and HGF were measured by multiplexed array and tested for associations with clinical outcomes. We observed an increase in the levels of IL-10, IFN-γ, PlGF and VEGF-D and a decrease in those of IL-8, VEGF, VEGF-C and sFlt-1 during and at the end of radiotherapy. Furthermore, baseline concentration of TNF-α significantly correlated with OS. IL-6 level at RTend and FU1,2 correlated with OS (RTend: p = 0.039, HR: 1.041, 95% CI: 1.002-1.082, FU1: p = 0.001, HR: 1.139, 95% CI: 1.056-1.228, FU2: p = 0.017, HR: 1.101 95% CI: 1.018-1.192), while IL-8 level correlated with OS at RTduring and RTend (RTduring: p = 0.017, HR: 1.014, 95% CI: 1.002-1.026, RTend: p = 0.004, HR: 1.007, 95% CI: 1.061-1.686). In conclusion, serum levels of TNF-α, IL-6 and IL-8 are potential biomarkers of response to radiotherapy. Given the recent implementation of immunotherapy in lung and esophageal cancer, these putative blood biomarkers should be further validated and evaluated in the combination or sequential therapy setting.

17.
Cancer Lett ; 520: 385-399, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34407431

ABSTRACT

This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Editor-in-Chief. Following the publication of the above article, the Editor was notified that an error occurred in which all images were published with incorrect versions. The Editor has taken the decision that the manuscript is no longer acceptable in its current form, nor with a corrigendum, as the extensive changes to the figures and publication would lead to ambiguity for our readers. We have therefore made the decision to retract this manuscript from Cancer Letters with the possibility of resubmission and republication of the manuscript in its corrected form after peer review.


Subject(s)
5'-Nucleotidase/genetics , AC133 Antigen/genetics , B7-H1 Antigen/genetics , Small Cell Lung Carcinoma/therapy , 5'-Nucleotidase/antagonists & inhibitors , AC133 Antigen/immunology , Animals , Antibodies, Anti-Idiotypic/pharmacology , B7-H1 Antigen/antagonists & inhibitors , Cell Line, Tumor , Female , Heterografts , Humans , Immunotherapy, Adoptive/trends , Male , Mice , Neoplasm Metastasis , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/pathology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/genetics , Receptors, Chimeric Antigen/genetics , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/therapeutic use , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/immunology , Small Cell Lung Carcinoma/pathology , T-Lymphocytes/immunology , Tumor Burden
18.
Clin Cancer Res ; 26(4): 945-956, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31694834

ABSTRACT

PURPOSE: There is growing interest in combinations of immunogenic radiotherapy (RT) and immune checkpoint blockade, but clinical responses are still limited. Therefore, we tested the triple therapy with an inhibitor of the indoleamine 2,3-dioxygenase pathway, which like immune checkpoints, downregulates the antitumor immune response. EXPERIMENTAL DESIGN: Triple treatment with hypofractionated RT (hRT) + anti-PD-1 antibody (αPD1) + indoximod was compared with the respective mono- and dual therapies in two syngeneic mouse models. RESULTS: The tumors did not regress following treatment with hRT + αPD1. The αPD1/indoximod combination was not effective at all. In contrast, triple treatment induced rapid, marked tumor regression, even in mice with a large tumor. The effects strongly depended on CD8+ T cells and partly on natural killer (NK) cells. Numbers and functionality of tumor-specific CD8+ T cells and NK cells were increased, particularly early during treatment. However, after 2.5-3 weeks, all large tumors relapsed, which was accompanied by increased apoptosis of tumor-infiltrating lymphocytes associated with a non-reprogrammable state of exhaustion, terminal differentiation, and increased activation-induced cell death, which could not be prevented by indoximod in these aggressive tumor models. Some mice with a smaller tumor were cured. Reirradiation during late regression (day 12), but not after relapse, cured almost all mice with a large B16-CD133 tumor, and strongly delayed relapse in the less immunogenic 4T1 model, depending on CD8+ T cells. CONCLUSIONS: Our findings may serve as a rationale for the clinical evaluation of this triple-combination therapy in patients with solitary or oligometastatic tumors in the neoadjuvant or the definitive setting.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Killer Cells, Natural/immunology , Mammary Neoplasms, Experimental/drug therapy , Mammary Neoplasms, Experimental/radiotherapy , Melanoma, Experimental/drug therapy , Melanoma, Experimental/radiotherapy , Tryptophan/analogs & derivatives , Animals , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/radiation effects , Cell Line, Tumor , Chemoradiotherapy , Female , Killer Cells, Natural/drug effects , Killer Cells, Natural/radiation effects , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/pathology , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Nude , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Radiation Dose Hypofractionation , Survival Rate , Tryptophan/pharmacology
19.
Biochem Biophys Res Commun ; 386(4): 563-8, 2009 Sep 04.
Article in English | MEDLINE | ID: mdl-19539606

ABSTRACT

Tripeptidyl peptidase II (TPPII) is a giant cytosolic protease. Previous protease inhibitor, overexpression and siRNA studies suggested that TPPII is important for viability and proliferation of tumor cells, and for their ionizing radiation-induced DNA damage response. The possibility that TPPII could be targeted for tumor therapy prompted us to study its role in transformed cells following genetic TPPII deletion. We generated cell lines from primary fibroblasts having conditional (floxed) TPPII alleles, transformed them with both the c-myc and H-ras oncogenes, and deleted TPPII using retroviral self-deleting Cre recombinase. Clonally derived TPPIIflox/flox and TPPII-/- transformed fibroblasts showed no influences of TPPII expression on basal cell survival and proliferation, nor on radiation-induced p53 activation, p21 induction, cell cycle arrest, apoptosis, or clonogenic cell death. Thus, our results do not support a generally important role of TPPII for viability and proliferation of transformed cells or their p53-mediated DNA damage response.


Subject(s)
Cell Transformation, Neoplastic/genetics , DNA Damage/genetics , Serine Endopeptidases/physiology , Aminopeptidases , Animals , Cell Survival/genetics , Cell Transformation, Neoplastic/pathology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases , Fibroblasts/enzymology , Fibroblasts/pathology , Genes, myc , Genes, ras , Mice , Mice, Knockout , Serine Endopeptidases/genetics
20.
Clin Cancer Res ; 25(23): 7243-7255, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31506388

ABSTRACT

PURPOSE: Localized radiotherapy can cause T-cell-mediated abscopal effects on nonirradiated metastases, particularly in combination with immune checkpoint blockade (ICB). However, results of prospective clinical trials have not met the expectations. We therefore investigated whether additional chemotherapy can enhance radiotherapy-induced abscopal effects in conjunction with ICB. EXPERIMENTAL DESIGN: In three different two-tumor mouse models, triple therapy with radiotherapy, anti-PD-1, and cisplatin (one of the most widely used antineoplastic agents) was compared with double or single therapies. RESULTS: In these mouse models, the response of the nonirradiated tumor and the survival of the mice were much better upon triple therapy than upon radiotherapy + anti-PD-1 or cisplatin + anti-PD-1 or the monotherapies; complete regression of the nonirradiated tumor was usually only observed in triple-treated mice. Mechanistically, the enhanced abscopal effect required CD8+T cells and relied on the CXCR3/CXCL10 axis. Moreover, CXCL10 was found to be directly induced by cisplatin in the tumor cells. Furthermore, cisplatin-induced CD8+T cells and direct cytoreductive effects of cisplatin also seem to contribute to the enhanced systemic effect. Finally, the results show that the abscopal effect is not precluded by the observed transient radiotherapy-induced lymphopenia. CONCLUSIONS: This is the first report showing that chemotherapy can enhance radiotherapy-induced abscopal effects in conjunction with ICB. This even applies to cisplatin, which is not classically immunogenic. Whereas previous studies have focused on how to effectively induce tumor-specific T cells, this study highlights that successful attraction of the induced T cells to nonirradiated tumors is also crucial for potent abscopal effects.


Subject(s)
B7-H1 Antigen/antagonists & inhibitors , CD8-Positive T-Lymphocytes/immunology , Chemokine CXCL10/antagonists & inhibitors , Chemoradiotherapy/methods , Colonic Neoplasms/therapy , Melanoma, Experimental/therapy , Receptors, CXCR3/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Apoptosis , CD8-Positive T-Lymphocytes/drug effects , Cell Proliferation , Cisplatin/pharmacology , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Disease Models, Animal , Humans , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Radiotherapy/methods , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL