Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
Add more filters

Publication year range
1.
Article in English | MEDLINE | ID: mdl-38684868

ABSTRACT

Targeted protein degradation refers to the use of small molecules to induce the selective degradation of proteins. In its most common form, this degradation is achieved through ligand-mediated neo-interactions between ubiquitin E3 ligases - the principal waste disposal machines of a cell - and the protein targets of interest, resulting in ubiquitylation and subsequent proteasomal degradation. Notable advances have been made in biological and mechanistic understanding of serendipitously discovered degraders. This improved understanding and novel chemistry has not only provided clinical proof of concept for targeted protein degradation but has also led to rapid growth of the field, with dozens of investigational drugs in active clinical trials. Two distinct classes of protein degradation therapeutics are being widely explored: bifunctional PROTACs and molecular glue degraders, both of which have their unique advantages and challenges. Here, we review the current landscape of targeted protein degradation approaches and how they have parallels in biological processes. We also outline the ongoing clinical exploration of novel degraders and provide some perspectives on the directions the field might take.

2.
Cell ; 181(3): 702-715.e20, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32315619

ABSTRACT

Protein phosphatase 2A (PP2A) enzymes can suppress tumors, but they are often inactivated in human cancers overexpressing inhibitory proteins. Here, we identify a class of small-molecule iHAPs (improved heterocyclic activators of PP2A) that kill leukemia cells by allosterically assembling a specific heterotrimeric PP2A holoenzyme consisting of PPP2R1A (scaffold), PPP2R5E (B56ε, regulatory), and PPP2CA (catalytic) subunits. One compound, iHAP1, activates this complex but does not inhibit dopamine receptor D2, a mediator of neurologic toxicity induced by perphenazine and related neuroleptics. The PP2A complex activated by iHAP1 dephosphorylates the MYBL2 transcription factor on Ser241, causing irreversible arrest of leukemia and other cancer cells in prometaphase. In contrast, SMAPs, a separate class of compounds, activate PP2A holoenzymes containing a different regulatory subunit, do not dephosphorylate MYBL2, and arrest tumor cells in G1 phase. Our findings demonstrate that small molecules can serve as allosteric switches to activate distinct PP2A complexes with unique substrates.


Subject(s)
Protein Phosphatase 2/metabolism , Apoptosis , Cell Cycle Proteins/drug effects , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Enzyme Activators/metabolism , G1 Phase , Humans , Multiprotein Complexes/metabolism , Multiprotein Complexes/physiology , Phenothiazines/pharmacology , Phosphorylation , Protein Phosphatase 2/physiology , Protein Subunits/metabolism , Trans-Activators/drug effects , Trans-Activators/metabolism , Transcription Factors/metabolism
3.
Cell ; 183(6): 1714-1731.e10, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33275901

ABSTRACT

Targeted protein degradation (TPD) refers to the use of small molecules to induce ubiquitin-dependent degradation of proteins. TPD is of interest in drug development, as it can address previously inaccessible targets. However, degrader discovery and optimization remains an inefficient process due to a lack of understanding of the relative importance of the key molecular events required to induce target degradation. Here, we use chemo-proteomics to annotate the degradable kinome. Our expansive dataset provides chemical leads for ∼200 kinases and demonstrates that the current practice of starting from the highest potency binder is an ineffective method for discovering active compounds. We develop multitargeted degraders to answer fundamental questions about the ubiquitin proteasome system, uncovering that kinase degradation is p97 dependent. This work will not only fuel kinase degrader discovery, but also provides a blueprint for evaluating targeted degradation across entire gene families to accelerate understanding of TPD beyond the kinome.


Subject(s)
Protein Kinases/metabolism , Proteolysis , Proteome/metabolism , Adult , Cell Line , Databases, Protein , Female , Humans , Male , Middle Aged , Proteasome Endopeptidase Complex/metabolism , Protein Kinases/genetics , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ubiquitin-Protein Ligases/metabolism , Young Adult
4.
Cell ; 174(2): 300-311.e11, 2018 07 12.
Article in English | MEDLINE | ID: mdl-30007416

ABSTRACT

Cyclic GMP-AMP synthase (cGAS) recognition of cytosolic DNA is critical for immune responses to pathogen replication, cellular stress, and cancer. Existing structures of the mouse cGAS-DNA complex provide a model for enzyme activation but do not explain why human cGAS exhibits severely reduced levels of cyclic GMP-AMP (cGAMP) synthesis compared to other mammals. Here, we discover that enhanced DNA-length specificity restrains human cGAS activation. Using reconstitution of cGAMP signaling in bacteria, we mapped the determinant of human cGAS regulation to two amino acid substitutions in the DNA-binding surface. Human-specific substitutions are necessary and sufficient to direct preferential detection of long DNA. Crystal structures reveal why removal of human substitutions relaxes DNA-length specificity and explain how human-specific DNA interactions favor cGAS oligomerization. These results define how DNA-sensing in humans adapted for enhanced specificity and provide a model of the active human cGAS-DNA complex to enable structure-guided design of cGAS therapeutics.


Subject(s)
DNA/metabolism , Immunologic Surveillance/physiology , Nucleotidyltransferases/metabolism , Animals , Benzofurans/chemistry , Benzofurans/metabolism , Binding Sites , Catalytic Domain , Chemotaxis/drug effects , DNA/chemistry , Humans , Mice , Molecular Docking Simulation , Mutagenesis, Site-Directed , Nucleotides, Cyclic/metabolism , Nucleotides, Cyclic/pharmacology , Nucleotidyltransferases/antagonists & inhibitors , Nucleotidyltransferases/genetics , Protein Multimerization , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Species Specificity , Vibrio cholerae/metabolism , Vibrio cholerae/physiology
6.
Mol Cell ; 84(13): 2511-2524.e8, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38996460

ABSTRACT

BCL6, an oncogenic transcription factor (TF), forms polymers in the presence of a small-molecule molecular glue that stabilizes a complementary interface between homodimers of BCL6's broad-complex, tramtrack, and bric-à-brac (BTB) domain. The BTB domains of other proteins, including a large class of TFs, have similar architectures and symmetries, raising the possibility that additional BTB proteins self-assemble into higher-order structures. Here, we surveyed 189 human BTB proteins with a cellular fluorescent reporter assay and identified 18 ZBTB TFs that show evidence of polymerization. Through biochemical and cryoelectron microscopy (cryo-EM) studies, we demonstrate that these ZBTB TFs polymerize into filaments. We found that BTB-domain-mediated polymerization of ZBTB TFs enhances chromatin occupancy within regions containing homotypic clusters of TF binding sites, leading to repression of target genes. Our results reveal a role of higher-order structures in regulating ZBTB TFs and suggest an underappreciated role for TF polymerization in modulating gene expression.


Subject(s)
Chromatin , Cryoelectron Microscopy , Humans , Chromatin/metabolism , Chromatin/genetics , Protein Multimerization , Binding Sites , Protein Binding , Transcription Factors/metabolism , Transcription Factors/genetics , Polymerization , HEK293 Cells , Gene Expression Regulation
7.
Mol Cell ; 83(15): 2753-2767.e10, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37478846

ABSTRACT

Nuclear hormone receptors (NRs) are ligand-binding transcription factors that are widely targeted therapeutically. Agonist binding triggers NR activation and subsequent degradation by unknown ligand-dependent ubiquitin ligase machinery. NR degradation is critical for therapeutic efficacy in malignancies that are driven by retinoic acid and estrogen receptors. Here, we demonstrate the ubiquitin ligase UBR5 drives degradation of multiple agonist-bound NRs, including the retinoic acid receptor alpha (RARA), retinoid x receptor alpha (RXRA), glucocorticoid, estrogen, liver-X, progesterone, and vitamin D receptors. We present the high-resolution cryo-EMstructure of full-length human UBR5 and a negative stain model representing its interaction with RARA/RXRA. Agonist ligands induce sequential, mutually exclusive recruitment of nuclear coactivators (NCOAs) and UBR5 to chromatin to regulate transcriptional networks. Other pharmacological ligands such as selective estrogen receptor degraders (SERDs) degrade their receptors through differential recruitment of UBR5 or RNF111. We establish the UBR5 transcriptional regulatory hub as a common mediator and regulator of NR-induced transcription.


Subject(s)
Chromatin , Transcription Factors , Humans , Ligands , Chromatin/genetics , Transcription Factors/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Ubiquitins , Ubiquitin-Protein Ligases/genetics
8.
Nature ; 628(8007): 442-449, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538798

ABSTRACT

Whereas oncogenes can potentially be inhibited with small molecules, the loss of tumour suppressors is more common and is problematic because the tumour-suppressor proteins are no longer present to be targeted. Notable examples include SMARCB1-mutant cancers, which are highly lethal malignancies driven by the inactivation of a subunit of SWI/SNF (also known as BAF) chromatin-remodelling complexes. Here, to generate mechanistic insights into the consequences of SMARCB1 mutation and to identify vulnerabilities, we contributed 14 SMARCB1-mutant cell lines to a near genome-wide CRISPR screen as part of the Cancer Dependency Map Project1-3. We report that the little-studied gene DDB1-CUL4-associated factor 5 (DCAF5) is required for the survival of SMARCB1-mutant cancers. We show that DCAF5 has a quality-control function for SWI/SNF complexes and promotes the degradation of incompletely assembled SWI/SNF complexes in the absence of SMARCB1. After depletion of DCAF5, SMARCB1-deficient SWI/SNF complexes reaccumulate, bind to target loci and restore SWI/SNF-mediated gene expression to levels that are sufficient to reverse the cancer state, including in vivo. Consequently, cancer results not from the loss of SMARCB1 function per se, but rather from DCAF5-mediated degradation of SWI/SNF complexes. These data indicate that therapeutic targeting of ubiquitin-mediated quality-control factors may effectively reverse the malignant state of some cancers driven by disruption of tumour suppressor complexes.


Subject(s)
Multiprotein Complexes , Mutation , Neoplasms , SMARCB1 Protein , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , CRISPR-Cas Systems , Gene Editing , Neoplasms/genetics , Neoplasms/metabolism , SMARCB1 Protein/deficiency , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Proteolysis , Ubiquitin/metabolism
9.
Nature ; 613(7943): 391-397, 2023 01.
Article in English | MEDLINE | ID: mdl-36599985

ABSTRACT

Chemical modifications of RNA have key roles in many biological processes1-3. N7-methylguanosine (m7G) is required for integrity and stability of a large subset of tRNAs4-7. The methyltransferase 1-WD repeat-containing protein 4 (METTL1-WDR4) complex is the methyltransferase that modifies G46 in the variable loop of certain tRNAs, and its dysregulation drives tumorigenesis in numerous cancer types8-14. Mutations in WDR4 cause human developmental phenotypes including microcephaly15-17. How METTL1-WDR4 modifies tRNA substrates and is regulated remains elusive18. Here we show,  through structural, biochemical and cellular studies of human METTL1-WDR4, that WDR4 serves as a scaffold for METTL1 and the tRNA T-arm. Upon tRNA binding, the αC region of METTL1 transforms into a helix, which together with the α6 helix secures both ends of the tRNA variable loop. Unexpectedly, we find that the predicted disordered N-terminal region of METTL1 is part of the catalytic pocket and essential for methyltransferase activity. Furthermore, we reveal that S27 phosphorylation in the METTL1 N-terminal region inhibits methyltransferase activity by locally disrupting the catalytic centre. Our results provide a molecular understanding of tRNA substrate recognition and phosphorylation-mediated regulation of METTL1-WDR4, and reveal the presumed disordered N-terminal region of METTL1 as a nexus of methyltransferase activity.


Subject(s)
GTP-Binding Proteins , Methyltransferases , RNA Processing, Post-Transcriptional , RNA, Transfer , Humans , Biocatalysis , Catalytic Domain , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , Methyltransferases/antagonists & inhibitors , Methyltransferases/chemistry , Methyltransferases/metabolism , Phosphorylation , RNA, Transfer/chemistry , RNA, Transfer/metabolism , Substrate Specificity
10.
Nature ; 615(7954): 913-919, 2023 03.
Article in English | MEDLINE | ID: mdl-36922589

ABSTRACT

Chromatin-binding proteins are critical regulators of cell state in haematopoiesis1,2. Acute leukaemias driven by rearrangement of the mixed lineage leukaemia 1 gene (KMT2Ar) or mutation of the nucleophosmin gene (NPM1) require the chromatin adapter protein menin, encoded by the MEN1 gene, to sustain aberrant leukaemogenic gene expression programs3-5. In a phase 1 first-in-human clinical trial, the menin inhibitor revumenib, which is designed to disrupt the menin-MLL1 interaction, induced clinical responses in patients with leukaemia with KMT2Ar or mutated NPM1 (ref. 6). Here we identified somatic mutations in MEN1 at the revumenib-menin interface in patients with acquired resistance to menin inhibition. Consistent with the genetic data in patients, inhibitor-menin interface mutations represent a conserved mechanism of therapeutic resistance in xenograft models and in an unbiased base-editor screen. These mutants attenuate drug-target binding by generating structural perturbations that impact small-molecule binding but not the interaction with the natural ligand MLL1, and prevent inhibitor-induced eviction of menin and MLL1 from chromatin. To our knowledge, this study is the first to demonstrate that a chromatin-targeting therapeutic drug exerts sufficient selection pressure in patients to drive the evolution of escape mutants that lead to sustained chromatin occupancy, suggesting a common mechanism of therapeutic resistance.


Subject(s)
Drug Resistance, Neoplasm , Leukemia , Mutation , Proto-Oncogene Proteins , Animals , Humans , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Binding Sites/drug effects , Binding Sites/genetics , Chromatin/genetics , Chromatin/metabolism , Drug Resistance, Neoplasm/genetics , Leukemia/drug therapy , Leukemia/genetics , Leukemia/metabolism , Protein Binding/drug effects , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism
11.
Mol Cell ; 81(17): 3468-3480.e7, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34314700

ABSTRACT

HECT ubiquitin ligases play essential roles in metazoan development and physiology. The HECT ligase HUWE1 is central to the cellular stress response by mediating degradation of key death or survival factors, including Mcl1, p53, DDIT4, and Myc. Although mutations in HUWE1 and related HECT ligases are widely implicated in human disease, our molecular understanding remains limited. Here we present a comprehensive investigation of full-length HUWE1, deepening our understanding of this class of enzymes. The N-terminal ∼3,900 amino acids of HUWE1 are indispensable for proper ligase function, and our cryo-EM structures of HUWE1 offer a complete molecular picture of this large HECT ubiquitin ligase. HUWE1 forms an alpha solenoid-shaped assembly with a central pore decorated with protein interaction modules. Structures of HUWE1 variants linked to neurodevelopmental disorders as well as of HUWE1 bound to a model substrate link the functions of this essential enzyme to its three-dimensional organization.


Subject(s)
Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism , Cryoelectron Microscopy/methods , HEK293 Cells , Humans , Stress, Physiological/physiology , Structure-Activity Relationship , Tumor Suppressor Proteins/genetics , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination
12.
Mol Cell ; 81(16): 3323-3338.e14, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34352207

ABSTRACT

The emerging "epitranscriptomics" field is providing insights into the biological and pathological roles of different RNA modifications. The RNA methyltransferase METTL1 catalyzes N7-methylguanosine (m7G) modification of tRNAs. Here we find METTL1 is frequently amplified and overexpressed in cancers and is associated with poor patient survival. METTL1 depletion causes decreased abundance of m7G-modified tRNAs and altered cell cycle and inhibits oncogenicity. Conversely, METTL1 overexpression induces oncogenic cell transformation and cancer. Mechanistically, we find increased abundance of m7G-modified tRNAs, in particular Arg-TCT-4-1, and increased translation of mRNAs, including cell cycle regulators that are enriched in the corresponding AGA codon. Accordingly, Arg-TCT expression is elevated in many tumor types and is associated with patient survival, and strikingly, overexpression of this individual tRNA induces oncogenic transformation. Thus, METTL1-mediated tRNA modification drives oncogenic transformation through a remodeling of the mRNA "translatome" to increase expression of growth-promoting proteins and represents a promising anti-cancer target.


Subject(s)
Carcinogenesis/genetics , Methyltransferases/genetics , Neoplasms/genetics , tRNA Methyltransferases/genetics , Guanosine/analogs & derivatives , Guanosine/genetics , Humans , Methylation , Neoplasms/pathology , Oncogenes/genetics , RNA Processing, Post-Transcriptional/genetics , RNA, Messenger/genetics , RNA, Transfer/genetics
13.
Blood ; 143(15): 1513-1527, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38096371

ABSTRACT

ABSTRACT: Small molecules that target the menin-KMT2A protein-protein interaction (menin inhibitors) have recently entered clinical trials in lysine methyltransferase 2A (KMT2A or MLL1)-rearranged (KMT2A-r) and nucleophosmin-mutant (NPM1c) acute myeloid leukemia (AML) and are demonstrating encouraging results. However, rationally chosen combination therapy is needed to improve responses and prevent resistance. We have previously identified IKZF1/IKAROS as a target in KMT2A-r AML and shown in preclinical models that IKAROS protein degradation with lenalidomide or iberdomide has modest single-agent activity yet can synergize with menin inhibitors. Recently, the novel IKAROS degrader mezigdomide was developed with greatly enhanced IKAROS protein degradation. In this study, we show that mezigdomide has increased preclinical activity in vitro as a single-agent in KMT2A-r and NPM1c AML cell lines, including sensitivity in cell lines resistant to lenalidomide and iberdomide. Further, we demonstrate that mezigdomide has the greatest capacity to synergize with and induce apoptosis in combination with menin inhibitors, including in MEN1 mutant models. We show that the superior activity of mezigdomide compared with lenalidomide or iberdomide is due to its increased depth, rate, and duration of IKAROS protein degradation. Single-agent mezigdomide was efficacious in 5 patient-derived xenograft models of KMT2A-r and 1 NPM1c AML. The combination of mezigdomide with the menin inhibitor VTP-50469 increased survival and prevented and overcame MEN1 mutations that mediate resistance in patients receiving menin inhibitor monotherapy. These results support prioritization of mezigdomide for early phase clinical trials in KMT2A-r and NPM1c AML, either as a single agent or in combination with menin inhibitors.


Subject(s)
Leukemia, Myeloid, Acute , Morpholines , Myeloid-Lymphoid Leukemia Protein , Phthalimides , Piperidones , Humans , Lenalidomide/therapeutic use , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Transcription Factors/genetics , Mutation
14.
Blood ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905635

ABSTRACT

The interaction between menin and histone-lysine N-methyltransferase 2A (KMT2A) is a critical dependency for KMT2A- or nucleophosmin 1 (NPM1)-altered leukemias and an emerging opportunity for therapeutic development. JNJ-75276617 is a novel, orally bioavailable, potent, and selective protein-protein interaction inhibitor of the binding between menin and KMT2A. In KMT2A-rearranged (KMT2A-r) and NPM1-mutant (NPM1c) AML cells, JNJ-75276617 inhibited the association of the menin-KMT2A complex with chromatin at target gene promoters, resulting in reduced expression of several menin-KMT2A target genes, including MEIS1 and FLT3. JNJ-75276617 displayed potent anti-proliferative activity across several AML and ALL cell lines and patient samples harboring KMT2A- or NPM1-alterations in vitro. In xenograft models of AML and ALL, JNJ-75276617 reduced leukemic burden and provided a significant dose-dependent survival benefit accompanied by expression changes of menin-KMT2A target genes. JNJ-75276617 demonstrated synergistic effects with gilteritinib in vitro in AML cells harboring KMT2A-r. JNJ-75276617 further exhibited synergistic effects with venetoclax and azacitidine in AML cells bearing KMT2A-r in vitro, and significantly increased survival in mice. Interestingly, JNJ-75276617 showed potent anti-proliferative activity in cell lines engineered with recently discovered mutations (MEN1M327I or MEN1T349M) that developed in patients refractory to the menin-KMT2A inhibitor revumenib. A co-crystal structure of menin in complex with JNJ-75276617 indicates a unique binding mode distinct from other menin-KMT2A inhibitors, including revumenib. JNJ-75276617 is being clinically investigated for acute leukemias harboring KMT2A or NPM1 alterations, as a monotherapy for relapsed/refractory (R/R) acute leukemia (NCT04811560), or in combination with AML-directed therapies (NCT05453903).

15.
Nat Chem Biol ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514884

ABSTRACT

Protein ubiquitylation controls diverse processes within eukaryotic cells, including protein degradation, and is often dysregulated in disease. Moreover, small-molecule degraders that redirect ubiquitylation activities toward disease targets are an emerging and promising therapeutic class. Over 600 E3 ubiquitin ligases are expressed in humans, but their substrates remain largely elusive, necessitating the development of new methods for their discovery. Here we report the development of E3-substrate tagging by ubiquitin biotinylation (E-STUB), a ubiquitin-specific proximity labeling method that biotinylates ubiquitylated substrates in proximity to an E3 ligase of interest. E-STUB accurately identifies the direct ubiquitylated targets of protein degraders, including collateral targets and ubiquitylation events that do not lead to substrate degradation. It also detects known substrates of E3 ligase CRBN and VHL with high specificity. With the ability to elucidate proximal ubiquitylation events, E-STUB may facilitate the development of proximity-inducing therapeutics and act as a generalizable method for E3-substrate mapping.

16.
Nat Chem Biol ; 20(1): 93-102, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37679459

ABSTRACT

Molecular glue degraders are an effective therapeutic modality, but their design principles are not well understood. Recently, several unexpectedly diverse compounds were reported to deplete cyclin K by linking CDK12-cyclin K to the DDB1-CUL4-RBX1 E3 ligase. Here, to investigate how chemically dissimilar small molecules trigger cyclin K degradation, we evaluated 91 candidate degraders in structural, biophysical and cellular studies and reveal all compounds acquire glue activity via simultaneous CDK12 binding and engagement of DDB1 interfacial residues, in particular Arg928. While we identify multiple published kinase inhibitors as cryptic degraders, we also show that these glues do not require pronounced inhibitory properties for activity and that the relative degree of CDK12 inhibition versus cyclin K degradation is tuneable. We further demonstrate cyclin K degraders have transcriptional signatures distinct from CDK12 inhibitors, thereby offering unique therapeutic opportunities. The systematic structure-activity relationship analysis presented herein provides a conceptual framework for rational molecular glue design.


Subject(s)
Cyclins , Ubiquitin-Protein Ligases , Cyclins/metabolism , Ubiquitin-Protein Ligases/metabolism , Proteolysis , Structure-Activity Relationship
17.
Cell ; 147(5): 1024-39, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-22118460

ABSTRACT

The DDB1-CUL4-RBX1 (CRL4) ubiquitin ligase family regulates a diverse set of cellular pathways through dedicated substrate receptors (DCAFs). The DCAF DDB2 detects UV-induced pyrimidine dimers in the genome and facilitates nucleotide excision repair. We provide the molecular basis for DDB2 receptor-mediated cyclobutane pyrimidine dimer recognition in chromatin. The structures of the fully assembled DDB1-DDB2-CUL4A/B-RBX1 (CRL4(DDB2)) ligases reveal that the mobility of the ligase arm creates a defined ubiquitination zone around the damage, which precludes direct ligase activation by DNA lesions. Instead, the COP9 signalosome (CSN) mediates the CRL4(DDB2) inhibition in a CSN5 independent, nonenzymatic, fashion. In turn, CSN inhibition is relieved upon DNA damage binding to the DDB2 module within CSN-CRL4(DDB2). The Cockayne syndrome A DCAF complex crystal structure shows that CRL4(DCAF(WD40)) ligases share common architectural features. Our data support a general mechanism of ligase activation, which is induced by CSN displacement from CRL4(DCAF) on substrate binding to the DCAF.


Subject(s)
Ubiquitin-Protein Ligases/chemistry , Animals , Crystallography, X-Ray , Cullin Proteins/chemistry , DNA Damage , DNA-Binding Proteins/chemistry , Enzyme Activation , Humans , Models, Molecular , Ubiquitin-Protein Ligases/metabolism , Xeroderma Pigmentosum Group A Protein/chemistry
18.
Nature ; 588(7836): 164-168, 2020 12.
Article in English | MEDLINE | ID: mdl-33208943

ABSTRACT

Effective and sustained inhibition of non-enzymatic oncogenic driver proteins is a major pharmacological challenge. The clinical success of thalidomide analogues demonstrates the therapeutic efficacy of drug-induced degradation of transcription factors and other cancer targets1-3, but a substantial subset of proteins are resistant to targeted degradation using existing approaches4,5. Here we report an alternative mechanism of targeted protein degradation, in which a small molecule induces the highly specific, reversible polymerization of a target protein, followed by its sequestration into cellular foci and subsequent degradation. BI-3802 is a small molecule that binds to the Broad-complex, Tramtrack and Bric-à-brac (BTB) domain of the oncogenic transcription factor B cell lymphoma 6 (BCL6) and leads to the proteasomal degradation of BCL66. We use cryo-electron microscopy to reveal how the solvent-exposed moiety of a BCL6-binding molecule contributes to a composite ligand-protein surface that engages BCL6 homodimers to form a supramolecular structure. Drug-induced formation of BCL6 filaments facilitates ubiquitination by the SIAH1 E3 ubiquitin ligase. Our findings demonstrate that a small molecule such as BI-3802 can induce polymerization coupled to highly specific protein degradation, which in the case of BCL6 leads to increased pharmacological activity compared to the effects induced by other BCL6 inhibitors. These findings open new avenues for the development of therapeutic agents and synthetic biology.


Subject(s)
Polymerization/drug effects , Proteolysis/drug effects , Proto-Oncogene Proteins c-bcl-6/chemistry , Proto-Oncogene Proteins c-bcl-6/metabolism , Cryoelectron Microscopy , Humans , In Vitro Techniques , Ligands , Models, Molecular , Nuclear Proteins/metabolism , Proteasome Endopeptidase Complex/drug effects , Proteasome Endopeptidase Complex/metabolism , Proto-Oncogene Proteins c-bcl-6/ultrastructure , Solvents , Synthetic Biology , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/drug effects
19.
Nature ; 585(7824): 293-297, 2020 09.
Article in English | MEDLINE | ID: mdl-32494016

ABSTRACT

Molecular glue compounds induce protein-protein interactions that, in the context of a ubiquitin ligase, lead to protein degradation1. Unlike traditional enzyme inhibitors, these molecular glue degraders act substoichiometrically to catalyse the rapid depletion of previously inaccessible targets2. They are clinically effective and highly sought-after, but have thus far only been discovered serendipitously. Here, through systematically mining databases for correlations between the cytotoxicity of 4,518 clinical and preclinical small molecules and the expression levels of E3 ligase components across hundreds of human cancer cell lines3-5, we identify CR8-a cyclin-dependent kinase (CDK) inhibitor6-as a compound that acts as a molecular glue degrader. The CDK-bound form of CR8 has a solvent-exposed pyridyl moiety that induces the formation of a complex between CDK12-cyclin K and the CUL4 adaptor protein DDB1, bypassing the requirement for a substrate receptor and presenting cyclin K for ubiquitination and degradation. Our studies demonstrate that chemical alteration of surface-exposed moieties can confer gain-of-function glue properties to an inhibitor, and we propose this as a broader strategy through which target-binding molecules could be converted into molecular glues.


Subject(s)
Cyclins/deficiency , Cyclins/metabolism , Proteolysis/drug effects , Purines/chemistry , Purines/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Cell Line, Tumor , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/chemistry , Cyclin-Dependent Kinases/metabolism , Cyclins/chemistry , DNA-Binding Proteins/metabolism , Humans , Models, Molecular , Proteasome Endopeptidase Complex/metabolism , Protein Binding/drug effects , Purines/toxicity , Pyridines/toxicity , Small Molecule Libraries/analysis , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Ubiquitination/drug effects
20.
J Biol Chem ; 300(5): 107268, 2024 May.
Article in English | MEDLINE | ID: mdl-38582449

ABSTRACT

Dysregulation of phosphorylation-dependent signaling is a hallmark of tumorigenesis. Protein phosphatase 2 (PP2A) is an essential regulator of cell growth. One scaffold subunit (A) binds to a catalytic subunit (C) to form a core AC heterodimer, which together with one of many regulatory (B) subunits forms the active trimeric enzyme. The combinatorial number of distinct PP2A complexes is large, which results in diverse substrate specificity and subcellular localization. The detailed mechanism of PP2A assembly and regulation remains elusive and reports about an important role of methylation of the carboxy terminus of PP2A C are conflicting. A better understanding of the molecular underpinnings of PP2A assembly and regulation is critical to dissecting PP2A function in physiology and disease. Here, we combined biochemical reconstitution, mass spectrometry, X-ray crystallography, and functional assays to characterize the assembly of trimeric PP2A. In vitro studies demonstrated that methylation of the carboxy-terminus of PP2A C was dispensable for PP2A assembly in vitro. To corroborate these findings, we determined the X-ray crystal structure of the unmethylated PP2A Aα-B56ε-Cα trimer complex to 3.1 Å resolution. The experimental structure superimposed well with an Alphafold2Multimer prediction of the PP2A trimer. We then predicted models of all canonical PP2A complexes providing a framework for structural analysis of PP2A. In conclusion, methylation was dispensable for trimeric PP2A assembly and integrative structural biology studies of PP2A offered predictive models for all canonical PP2A complexes.


Subject(s)
Protein Phosphatase 2 , Humans , Catalytic Domain , Crystallography, X-Ray , Methylation , Protein Multimerization , Protein Phosphatase 2/metabolism , Protein Phosphatase 2/genetics , Protein Phosphatase 2/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL