Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters

Country/Region as subject
Publication year range
2.
Basic Res Cardiol ; 117(1): 48, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36205817

ABSTRACT

Although p38 MAP Kinase α (p38 MAPKα) is generally accepted to play a central role in the cardiac stress response, to date its function in maladaptive cardiac hypertrophy is still not unambiguously defined. To induce a pathological type of cardiac hypertrophy we infused angiotensin II (AngII) for 2 days via osmotic mini pumps in control and tamoxifen-inducible, cardiomyocyte (CM)-specific p38 MAPKα KO mice (iCMp38αKO) and assessed cardiac function by echocardiography, complemented by transcriptomic, histological, and immune cell analysis. AngII treatment after inactivation of p38 MAPKα in CM results in left ventricular (LV) dilatation within 48 h (EDV: BL: 83.8 ± 22.5 µl, 48 h AngII: 109.7 ± 14.6 µl) and an ectopic lipid deposition in cardiomyocytes, reflecting a metabolic dysfunction in pressure overload (PO). This was accompanied by a concerted downregulation of transcripts for oxidative phosphorylation, TCA cycle, and fatty acid metabolism. Cardiac inflammation involving neutrophils, macrophages, B- and T-cells was significantly enhanced. Inhibition of adipose tissue lipolysis by the small molecule inhibitor of adipocytetriglyceride lipase (ATGL) Atglistatin reduced cardiac lipid accumulation by 70% and neutrophil infiltration by 30% and went along with an improved cardiac function. Direct targeting of neutrophils by means of anti Ly6G-antibody administration in vivo led to a reduced LV dilation in iCMp38αKO mice and an improved systolic function (EF: 39.27 ± 14%). Thus, adipose tissue lipolysis and CM lipid accumulation augmented cardiac inflammation in iCMp38αKO mice. Neutrophils, in particular, triggered the rapid left ventricular dilatation. We provide the first evidence that p38 MAPKα acts as an essential switch in cardiac adaptation to PO by mitigating metabolic dysfunction and inflammation. Moreover, we identified a heart-adipose tissue-immune cell crosstalk, which might serve as new therapeutic target in cardiac pathologies.


Subject(s)
Heart Failure , Myocytes, Cardiac , Adipose Tissue/metabolism , Angiotensin II/metabolism , Animals , Cardiomegaly/metabolism , Fatty Acids/metabolism , Inflammation/metabolism , Lipase/metabolism , Lipase/therapeutic use , Lipids/therapeutic use , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/metabolism , Neutrophils/metabolism , Tamoxifen/metabolism , Tamoxifen/therapeutic use , p38 Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/therapeutic use
3.
Arterioscler Thromb Vasc Biol ; 41(10): 2551-2562, 2021 10.
Article in English | MEDLINE | ID: mdl-34380333

ABSTRACT

Objective: The dominant driver of arteriogenesis is elevated shear stress sensed by the endothelial glycocalyx thereby promoting arterial outward remodeling. Hyaluronan, a critical component of the endothelial glycocalyx, is synthesized by 3 HAS isoenzymes (hyaluronan synthases 1-3) at the plasma membrane. Considering further the importance of HAS3 for smooth muscle cell and immune cell functions we aimed to evaluate its role in collateral artery growth. Approach and Results: Male Has3-deficient (Has3-KO) mice were subjected to hindlimb ischemia. Blood perfusion was monitored by laser Doppler perfusion imaging and endothelial function was assessed by measurement of flow-mediated dilation in vivo. Collateral remodeling was monitored by high resolution magnetic resonance angiography. A neutralizing antibody against CD44 (clone KM201) was injected intraperitoneally to analyze hyaluronan signaling in vivo. After hindlimb ischemia, Has3-KO mice showed a reduced arteriogenic response with decreased collateral remodeling and impaired perfusion recovery. While postischemic leukocyte infiltration was unaffected, a diminished flow-mediated dilation pointed towards an impaired endothelial cell function. Indeed, endothelial AKT (protein kinase B)-dependent eNOS (endothelial nitric oxide synthase) phosphorylation at Ser1177 was substantially reduced in Has3-KO thigh muscles. Endothelial-specific Has3-KO mice mimicked the hindlimb ischemia-induced phenotype of impaired perfusion recovery as observed in global Has3-deficiency. Mechanistically, blocking selectively the hyaluronan binding site of CD44 reduced flow-mediated dilation, thereby suggesting hyaluronan signaling through CD44 as the underlying signaling pathway. Conclusions: In summary, HAS3 contributes to arteriogenesis in hindlimb ischemia by hyaluronan/CD44-mediated stimulation of eNOS phosphorylation at Ser1177. Thus, strategies augmenting endothelial HAS3 or CD44 could be envisioned to enhance vascularization under pathological conditions.


Subject(s)
Endothelial Cells/enzymology , Hindlimb/blood supply , Hyaluronan Receptors/metabolism , Hyaluronan Synthases/metabolism , Ischemia/enzymology , Neovascularization, Physiologic , Nitric Oxide Synthase Type III/metabolism , Animals , Collateral Circulation , Disease Models, Animal , Humans , Hyaluronan Synthases/genetics , Ischemia/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout, ApoE , Nitric Oxide Synthase Type III/genetics , Phosphorylation , Regional Blood Flow , Signal Transduction , Time Factors
4.
Arterioscler Thromb Vasc Biol ; 41(2): 796-807, 2021 02.
Article in English | MEDLINE | ID: mdl-33380173

ABSTRACT

OBJECTIVE: The aim of this study was to unravel mechanisms whereby deficiency of the transcription factor Id3 (inhibitor of differentiation 3) leads to metabolic dysfunction in visceral obesity. We investigated the impact of loss of Id3 on hyaluronic acid (HA) production by the 3 HAS isoenzymes (HA synthases; -1, -2, and -3) and on obesity-induced adipose tissue (AT) accumulation of proinflammatory B cells. Approach and Results: Male Id3-/- mice and respective wild-type littermate controls were fed a 60% high-fat diet for 4 weeks. An increase in inflammatory B2 cells was detected in Id3-/- epididymal AT. HA accumulated in epididymal AT of high-fat diet-fed Id3-/- mice and circulating levels of HA were elevated. Has2 mRNA expression was increased in epididymal AT of Id3-/- mice. Luciferase promoter assays showed that Id3 suppressed Has2 promoter activity, while loss of Id3 stimulated Has2 promoter activity. Functionally, HA strongly promoted B2 cell adhesion in the AT and on cultured vascular smooth muscle cells of Id3-/- mice, an effect sensitive to hyaluronidase. CONCLUSIONS: Our data demonstrate that loss of Id3 increases Has2 expression in the epididymal AT, thereby promoting HA accumulation. In turn, elevated HA content promotes HA-dependent binding of B2 cells and an increase in the B2 cells in the AT, which contributes to AT inflammation.


Subject(s)
Adipose Tissue/metabolism , B-Lymphocytes/metabolism , Hyaluronan Synthases/metabolism , Hyaluronic Acid/biosynthesis , Inhibitor of Differentiation Proteins/metabolism , Panniculitis/metabolism , Adipose Tissue/immunology , Animals , B-Lymphocytes/immunology , Cell Adhesion , Cells, Cultured , Coculture Techniques , Diet, High-Fat , Disease Models, Animal , Hyaluronan Synthases/genetics , Inhibitor of Differentiation Proteins/genetics , Macrophages/immunology , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/immunology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/immunology , Myocytes, Smooth Muscle/metabolism , Panniculitis/genetics , Panniculitis/immunology , Phenotype , Signal Transduction , Up-Regulation
5.
Diabetologia ; 64(8): 1834-1849, 2021 08.
Article in English | MEDLINE | ID: mdl-34131781

ABSTRACT

AIMS/HYPOTHESIS: People with diabetes have an increased cardiovascular risk with an accelerated development of atherosclerosis and an elevated mortality rate after myocardial infarction. Therefore, cardioprotective effects of glucose-lowering therapies are of major importance for the pharmacotherapy of individuals with type 2 diabetes. For sodium-glucose cotransporter 2 inhibitors (SGLT2is), in addition to a reduction in blood glucose, beneficial effects on atherosclerosis, obesity, renal function and blood pressure have been observed. Recent results showed a reduced risk of worsening heart failure and cardiovascular deaths under dapagliflozin treatment irrespective of the diabetic state. However, the underlying mechanisms are yet unknown. Platelets are known drivers of atherosclerosis and atherothrombosis and disturbed platelet activation has also been suggested to occur in type 2 diabetes. Therefore, the present study investigates the impact of the SGLT2i dapagliflozin on the interplay between platelets and inflammation in atherogenesis. METHODS: Male, 8-week-old LDL-receptor-deficient (Ldlr-/-) mice received a high-fat, high-sucrose diabetogenic diet supplemented without (control) or with dapagliflozin (5 mg/kg body weight per day) for two time periods: 8 and 25 weeks. In a first translational approach, eight healthy volunteers received 10 mg dapagliflozin/day for 4 weeks. RESULTS: Dapagliflozin treatment ameliorated atherosclerotic lesion development, reduced circulating platelet-leucocyte aggregates (glycoprotein [GP]Ib+CD45+: 29.40 ± 5.94 vs 17.00 ± 5.69 cells, p < 0.01; GPIb+lymphocyte antigen 6 complex, locus G+ (Ly6G): 8.00 ± 2.45 vs 4.33 ± 1.75 cells, p < 0.05) and decreased aortic macrophage infiltration (1.31 ± 0.62 vs 0.70 ± 0.58 ×103 cells/aorta, p < 0.01). Deeper analysis revealed that dapagliflozin decreased activated CD62P-positive platelets in Ldlr-/- mice fed a diabetogenic diet (3.78 ± 1.20% vs 2.83 ± 1.06%, p < 0.01) without affecting bleeding time (85.29 ± 37.27 vs 89.25 ± 16.26 s, p = 0.78). While blood glucose was only moderately affected, dapagliflozin further reduced endogenous thrombin generation (581.4 ± 194.6 nmol/l × min) × 10-9 thrombin vs 254.1 ± 106.4 (nmol/l × min) × 10-9 thrombin), thereby decreasing one of the most important platelet activators. We observed a direct inhibitory effect of dapagliflozin on isolated platelets. In addition, dapagliflozin increased HDL-cholesterol levels. Importantly, higher HDL-cholesterol levels (1.70 ± 0.58 vs 3.15 ± 1.67 mmol/l, p < 0.01) likely contribute to dapagliflozin-mediated inhibition of platelet activation and thrombin generation. Accordingly, in line with the results in mice, treatment with dapagliflozin lowered CD62P-positive platelet counts in humans after stimulation by collagen-related peptide (CRP; 88.13 ± 5.37% of platelets vs 77.59 ± 10.70%, p < 0.05) or thrombin receptor activator peptide-6 (TRAP-6; 44.23 ± 15.54% vs 28.96 ± 11.41%, p < 0.01) without affecting haemostasis. CONCLUSIONS/INTERPRETATION: We demonstrate that dapagliflozin-mediated atheroprotection in mice is driven by elevated HDL-cholesterol and ameliorated thrombin-platelet-mediated inflammation without interfering with haemostasis. This glucose-independent mechanism likely contributes to dapagliflozin's beneficial cardiovascular risk profile.


Subject(s)
Benzhydryl Compounds/therapeutic use , Coronary Artery Disease/prevention & control , Diabetes Mellitus, Type 2/drug therapy , Glucosides/therapeutic use , Platelet Activation/drug effects , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Thrombin/metabolism , Adult , Animals , Blood Glucose/metabolism , Blood Platelets/drug effects , Blood Platelets/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/prevention & control , Cholesterol, HDL/blood , Coronary Artery Disease/metabolism , Diabetes Mellitus, Type 2/metabolism , Female , Flow Cytometry , Healthy Volunteers , Humans , Immunohistochemistry , Male , Mice, Inbred C57BL , Middle Aged , P-Selectin/metabolism , Platelet Count , Real-Time Polymerase Chain Reaction , Risk Reduction Behavior
6.
PLoS Biol ; 16(6): e2004408, 2018 06.
Article in English | MEDLINE | ID: mdl-29927970

ABSTRACT

We show that the cyclin-dependent kinase inhibitor 1B (CDKN1B)/p27, previously known as a cell cycle inhibitor, is also localized within mitochondria. The migratory capacity of endothelial cells, which need intact mitochondria, is completely dependent on mitochondrial p27. Mitochondrial p27 improves mitochondrial membrane potential, increases adenosine triphosphate (ATP) content, and is required for the promigratory effect of caffeine. Domain mapping of p27 revealed that the N-terminus and C-terminus are required for those improvements. Further analysis of those regions revealed that the translocation of p27 into the mitochondria and its promigratory activity depend on serine 10 and threonine 187. In addition, mitochondrial p27 protects cardiomyocytes against apoptosis. Moreover, mitochondrial p27 is necessary and sufficient for cardiac myofibroblast differentiation. In addition, p27 deficiency and aging decrease respiration in heart mitochondria. Caffeine does not increase respiration in p27-deficient animals, whereas aged mice display improvement after 10 days of caffeine in drinking water. Moreover, caffeine induces transcriptome changes in a p27-dependent manner, affecting mostly genes relevant for mitochondrial processes. Caffeine also reduces infarct size after myocardial infarction in prediabetic mice and increases mitochondrial p27. Our data characterize mitochondrial p27 as a common denominator that improves mitochondria-dependent processes and define an increase in mitochondrial p27 as a new mode of action of caffeine.


Subject(s)
Caffeine/pharmacology , Cardiotonic Agents/pharmacology , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Mitochondria/metabolism , Myocardial Infarction/pathology , Myocytes, Cardiac/physiology , Adenosine Triphosphate/metabolism , Animals , Apoptosis/physiology , Cell Differentiation/physiology , Cell Line , Cell Movement/physiology , Cyclin-Dependent Kinase Inhibitor p27/genetics , Endothelial Cells/physiology , HEK293 Cells , Humans , Membrane Potential, Mitochondrial/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/cytology , Protein Transport/physiology
7.
Circ Res ; 124(10): 1433-1447, 2019 05 10.
Article in English | MEDLINE | ID: mdl-30916618

ABSTRACT

RATIONALE: Immediate changes in the ECM (extracellular matrix) microenvironment occur after myocardial ischemia and reperfusion (I/R) injury. OBJECTIVE: Aim of this study was to unravel the role of the early hyaluronan (HA)-rich ECM after I/R. METHODS AND RESULTS: Genetic deletion of Has2 and Has1 was used in a murine model of cardiac I/R. Chemical exchange saturation transfer imaging was adapted to image cardiac ECM post-I/R. Of note, the cardiac chemical exchange saturation transfer signal was severely suppressed by Has2 deletion and pharmacological inhibition of HA synthesis 24 hours after I/R. Has2 KO ( Has2 deficient) mice showed impaired hemodynamic function suggesting a protective role for endogenous HA synthesis. In contrast to Has2 deficiency, Has1-deficient mice developed no specific phenotype compared with control post-I/R. Importantly, in Has2 KO mice, cardiac macrophages were diminished after I/R as detected by 19F MRI (magnetic resonance imaging) of perfluorcarbon-labeled immune cells, Mac-2/Galectin-3 immunostaining, and FACS (fluorescence-activated cell sorting) analysis (CD45+CD11b+Ly6G-CD64+F4/80+cells). In contrast to macrophages, cardiac Ly6Chigh and Ly6Clow monocytes were unaffected post-I/R compared with control mice. Mechanistically, inhibition of HA synthesis led to increased macrophage apoptosis in vivo and in vitro. In addition, α-SMA (α-smooth muscle actin)-positive cells were reduced in the infarcted myocardium and in the border zone. In vitro, the myofibroblast response as measured by Acta2 mRNA expression was reduced by inhibition of HA synthesis and of CD44 signaling. Furthermore, Has2 KO fibroblasts were less able to contract collagen gels in vitro. The effects of HA/CD44 on fibroblasts and macrophages post-I/R might also affect intercellular cross talk because cardiac fibroblasts were activated by monocyte/macrophages and, in turn, protected macrophages from apoptosis. CONCLUSIONS: Increased HA synthesis contributes to postinfarct healing by supporting macrophage survival and by promoting the myofibroblast response. Additionally, imaging of cardiac HA by chemical exchange saturation transfer post-I/R might have translational value.


Subject(s)
Extracellular Matrix/physiology , Hyaluronan Synthases/deficiency , Hyaluronic Acid/biosynthesis , Macrophages/physiology , Myocardial Reperfusion Injury/physiopathology , Wound Healing/physiology , Actins/metabolism , Animals , Apoptosis , Cell Communication/physiology , Cell Survival , Cellular Microenvironment/physiology , Extracellular Matrix/metabolism , Hyaluronan Receptors/metabolism , Hyaluronic Acid/antagonists & inhibitors , Magnetic Resonance Imaging/methods , Male , Mice , Mice, Inbred C57BL , Monocytes/metabolism , Monocytes/physiology , Myocardial Reperfusion Injury/metabolism , Myocardium/cytology , Myofibroblasts/metabolism , Myofibroblasts/physiology
8.
Int J Mol Sci ; 22(22)2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34830059

ABSTRACT

BACKGROUND: Vascular injury induces the exposure of subendothelial extracellular matrix (ECM) important to serve as substrate for platelets to adhere to the injured vessel wall to avoid massive blood loss. Different ECM proteins are known to initiate platelet adhesion and activation. In atherosclerotic mice, the small, leucine-rich proteoglycan biglycan is important for the regulation of thrombin activity via heparin cofactor II. However, nothing is known about the role of biglycan for hemostasis and thrombosis under nonatherosclerotic conditions. METHODS: The role of biglycan for platelet adhesion and thrombus formation was investigated using a recombinant protein and biglycan knockout mice. RESULTS: The present study identified biglycan as important ECM protein for the adhesion and activation of platelets, and the formation of three-dimensional thrombi under flow conditions. Platelet adhesion to immobilized biglycan induces the reorganization of the platelet cytoskeleton. Mechanistically, biglycan binds and activates the major collagen receptor glycoprotein (GP)VI, because reduced platelet adhesion to recombinant biglycan was observed when GPVI was blocked and enhanced tyrosine phosphorylation in a GPVI-dependent manner was observed when platelets were stimulated with biglycan. In vivo, the deficiency of biglycan resulted in reduced platelet adhesion to the injured carotid artery and prolonged bleeding times. CONCLUSIONS: Loss of biglycan in the vessel wall of mice but not in platelets led to reduced platelet adhesion at the injured carotid artery and prolonged bleeding times, suggesting a crucial role for biglycan as ECM protein that binds and activates platelets via GPVI upon vessel injury.


Subject(s)
Biglycan/genetics , Biglycan/metabolism , Platelet Adhesiveness/physiology , Platelet Membrane Glycoproteins/metabolism , Thrombosis/metabolism , Animals , Blood Platelets/metabolism , Blood Platelets/pathology , Carotid Arteries/metabolism , Carotid Artery Injuries/metabolism , Collagen/metabolism , Cytoskeleton/metabolism , Extracellular Matrix Proteins/metabolism , Healthy Volunteers , Hemorrhage/genetics , Hemorrhage/metabolism , Humans , Integrins/metabolism , Male , Mice, Inbred C57BL , Platelet Activation/physiology , Platelet Adhesiveness/genetics
9.
J Biol Chem ; 294(19): 7864-7877, 2019 05 10.
Article in English | MEDLINE | ID: mdl-30914479

ABSTRACT

4-Methylumbelliferone (4-MU) inhibits hyaluronan (HA) synthesis and is an approved drug used for managing biliary spasm. However, rapid and efficient glucuronidation is thought to limit its utility for systemically inhibiting HA synthesis. In particular, 4-MU in mice has a short half-life, causing most of the drug to be present as the metabolite 4-methylumbelliferyl glucuronide (4-MUG), which makes it remarkable that 4-MU is effective at all. We report here that 4-MUG contributes to HA synthesis inhibition. We observed that oral administration of 4-MUG to mice inhibits HA synthesis, promotes FoxP3+ regulatory T-cell expansion, and prevents autoimmune diabetes. Mice fed either 4-MUG or 4-MU had equivalent 4-MU:4-MUG ratios in serum, liver, and pancreas, indicating that 4-MU and 4-MUG reach an equilibrium in these tissues. LC-tandem MS experiments revealed that 4-MUG is hydrolyzed to 4-MU in serum, thereby greatly increasing the effective bioavailability of 4-MU. Moreover, using intravital 2-photon microscopy, we found that 4-MUG (a nonfluorescent molecule) undergoes conversion into 4-MU (a fluorescent molecule) and that 4-MU is extensively tissue bound in the liver, fat, muscle, and pancreas of treated mice. 4-MUG also suppressed HA synthesis independently of its conversion into 4-MU and without depletion of the HA precursor UDP-glucuronic acid (GlcUA). Together, these results indicate that 4-MUG both directly and indirectly inhibits HA synthesis and that the effective bioavailability of 4-MU is higher than previously thought. These findings greatly alter the experimental and therapeutic possibilities for HA synthesis inhibition.


Subject(s)
Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 1/metabolism , Hyaluronic Acid/biosynthesis , Hymecromone/analogs & derivatives , T-Lymphocytes, Regulatory/metabolism , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/pathology , Hymecromone/pharmacology , Mice , T-Lymphocytes, Regulatory/pathology
10.
Basic Res Cardiol ; 115(4): 43, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32533377

ABSTRACT

Anaemia is frequently present in patients with acute myocardial infarction (AMI) and contributes to an adverse prognosis. We hypothesised that, besides reduced oxygen carrying capacity, anaemia is associated with (1) red blood cell (RBC) dysfunction and a reduced circulating nitric oxide (NO) pool, (2) compensatory enhancement of vascular and cardiac endothelial nitric oxide synthase (eNOS) activity, and (3) contribution of both, RBC dysfunction and reduced circulatory NO pool to left ventricular (LV) dysfunction and fatal outcome in AMI. In mouse models of subacute and chronic anaemia from repeated mild blood loss the circulating NO pool, RBC, cardiac and vascular function were analysed at baseline and in reperfused AMI. In anaemia, RBC function resulted in profound changes in membrane properties, enhanced turnover, haemolysis, dysregulation of intra-erythrocytotic redox state, and RBC-eNOS. RBC from anaemic mice and from anaemic patients with acute coronary syndrome impaired the recovery of contractile function of isolated mouse hearts following ischaemia/reperfusion. In anaemia, the circulating NO pool was reduced. The cardiac and vascular adaptation to anaemia was characterised by increased arterial eNOS expression and activity and an eNOS-dependent increase of end-diastolic left ventricular volume. Endothelial dysfunction induced through genetic or pharmacologic reduction of eNOS-activity abrogated the anaemia-induced cardio-circulatory compensation. Superimposed AMI was associated with decreased survival. In summary, moderate blood loss anaemia is associated with severe RBC dysfunction and reduced circulating NO pool. Vascular and cardiac eNOS are crucial for the cardio-circulatory adaptation to anaemia. RBC dysfunction together with eNOS dysfunction may contribute to adverse outcomes in AMI.


Subject(s)
Adaptation, Physiological/physiology , Anemia/physiopathology , Erythrocytes/pathology , Heart/physiopathology , Nitric Oxide/blood , Acute Coronary Syndrome/blood , Acute Coronary Syndrome/physiopathology , Anemia/blood , Animals , Arteries/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Myocardial Infarction/blood , Myocardial Infarction/physiopathology , Nitric Oxide Synthase Type III/metabolism
11.
Mol Ther ; 27(1): 46-58, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30528085

ABSTRACT

Insulin-like growth factor 1 (IGF1) is an anabolic hormone that controls the growth and metabolism of many cell types. However, IGF1 also mediates cardio-protective effects after acute myocardial infarction (AMI), but the underlying mechanisms and cellular targets are not fully understood. Here we demonstrate that short-term IGF1 treatment for 3 days after AMI improved cardiac function after 1 and 4 weeks. Regional wall motion was improved in ischemic segments, scar size was reduced, and capillary density increased in the infarcted area and the border zone. Unexpectedly, inducible inactivation of the IGF1 receptor (IGF1R) in cardiomyocytes did not attenuate the protective effect of IGF1. Sequential cardiac transcriptomic analysis indicated an altered myeloid cell response in the acute phase after AMI, and, notably, myeloid-cell Igf1r-/- mice lost the protective IGF1 function after I/R. In addition, IGF1 induced an M2-like anti-inflammatory phenotype in bone marrow-derived macrophages and enhanced the number of anti-inflammatory macrophages in heart tissue on day 3 after AMI in vivo. In summary, modulation of the acute inflammatory phase after AMI by IGF1 represents an effective mechanism to preserve cardiac function after I/R.


Subject(s)
Insulin-Like Growth Factor I/therapeutic use , Myeloid Cells/drug effects , Myocardial Infarction/drug therapy , Animals , Echocardiography , Flow Cytometry , Mice , Mice, Inbred C57BL , Mice, Knockout , Real-Time Polymerase Chain Reaction , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism
12.
FASEB J ; 31(7): 2869-2880, 2017 07.
Article in English | MEDLINE | ID: mdl-28325757

ABSTRACT

While radiotherapy is a mainstay for cancer therapy, pneumonitis and fibrosis constitute dose-limiting side effects of thorax and whole body irradiation. So far, the contribution of immune cells to disease progression is largely unknown. Here we studied the role of ecto-5'-nucelotidase (CD73)/adenosine-induced changes in the myeloid compartment in radiation-induced lung fibrosis. C57BL/6 wild-type or CD73-/- mice received a single dose of whole thorax irradiation (WTI, 15 Gy). Myeloid cells were characterized in flow cytometric, histologic, and immunohistochemical analyses as well as RNA analyses. WTI induced a pronounced reduction of alveolar macrophages in both strains that recovered within 6 wk. Fibrosis development in wild-type mice was associated with a time-dependent deposition of hyaluronic acid (HA) and increased expression of markers for alternative activation on alveolar macrophages. These include the antiinflammatory macrophage mannose receptor and arginase-1. Further, macrophages accumulated in organized clusters and expressed profibrotic mediators at ≥25 wk after irradiation (fibrotic phase). Irradiated CD73-/- mice showed an altered regulation of components of the HA system and no clusters of alternatively activated macrophages. We speculate that accumulation of alternatively activated macrophages in organized clusters represents the origins of fibrotic foci after WTI and is promoted by a cross-talk between HA, CD73/adenosine signaling, and other profibrotic mediators.-De Leve, S., Wirsdörfer, F., Cappuccini, F., Schütze, A., Meyer, A. V., Röck, K., Thompson, L. F., Fischer, J. W., Stuschke, M., Jendrossek, V. Loss of CD73 prevents accumulation of alternatively activated macrophages and the formation of prefibrotic macrophage clusters in irradiated lungs.


Subject(s)
5'-Nucleotidase/metabolism , Gene Expression Regulation, Enzymologic/physiology , Lung/cytology , Lung/radiation effects , Macrophages, Alveolar/radiation effects , Adenosine/metabolism , Animals , CD11b Antigen/metabolism , Cell Adhesion , Hyaluronic Acid/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Pulmonary Fibrosis/etiology , Signal Transduction
13.
Circ Res ; 119(9): 1017-1029, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27650557

ABSTRACT

RATIONALE: Myocardial infarction (MI) increases the wall stress in the viable myocardium and initiates early adaptive remodeling in the left ventricle to maintain cardiac output. Later remodeling processes include fibrotic reorganization that eventually leads to cardiac failure. Understanding the mechanisms that support cardiac function in the early phase post MI and identifying the processes that initiate transition to maladaptive remodeling are of major clinical interest. OBJECTIVE: To characterize MI-induced changes in titin-based cardiac myocyte stiffness and to elucidate the role of titin in ventricular remodeling of remote myocardium in the early phase after MI. METHODS AND RESULTS: Titin properties were analyzed in Langendorff-perfused mouse hearts after 20-minute ischemia/60-minute reperfusion (I/R), and mouse hearts that underwent ligature of the left anterior descending coronary artery for 3 or 10 days. Cardiac myocyte passive tension was significantly increased 1 hour after ischemia/reperfusion and 3 and 10 days after left anterior descending coronary artery ligature. The increased passive tension was caused by hypophosphorylation of the titin N2-B unique sequence and hyperphosphorylation of the PEVK (titin domain rich in proline, glutamate, valine, and lysine) region of titin. Blocking of interleukine-6 before left anterior descending coronary artery ligature restored titin-based myocyte tension after MI, suggesting that MI-induced titin stiffening is mediated by elevated levels of the cytokine interleukine-6. We further demonstrate that the early remodeling processes 3 days after MI involve accelerated titin turnover by the ubiquitin-proteasome system. CONCLUSIONS: We conclude that titin-based cardiac myocyte stiffening acutely after MI is partly mediated by interleukine-6 and is an important mechanism of remote myocardium to adapt to the increased mechanical demands after myocardial injury.


Subject(s)
Adaptation, Physiological/physiology , Connectin/metabolism , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Ventricular Remodeling/physiology , Animals , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Myocardial Infarction/pathology , Myocytes, Cardiac/pathology , Organ Culture Techniques , Phosphorylation/physiology , Pregnancy , Rats , Rats, Wistar
14.
Circ Res ; 119(2): 237-48, 2016 07 08.
Article in English | MEDLINE | ID: mdl-27142162

ABSTRACT

RATIONALE: In patients after acute myocardial infarction (AMI), the initial extent of necrosis and inflammation determine clinical outcome. One early event in AMI is the increased cardiac expression of atrial natriuretic peptide (NP) and B-type NP, with their plasma levels correlating with severity of ischemia. It was shown that NPs, via their cGMP-forming guanylyl cyclase-A (GC-A) receptor and cGMP-dependent kinase I (cGKI), strengthen systemic endothelial barrier properties in acute inflammation. OBJECTIVE: We studied whether endothelial actions of local NPs modulate myocardial injury and early inflammation after AMI. METHODS AND RESULTS: Necrosis and inflammation after experimental AMI were compared between control mice and littermates with endothelial-restricted inactivation of GC-A (knockout mice with endothelial GC-A deletion) or cGKI (knockout mice with endothelial cGKI deletion). Unexpectedly, myocardial infarct size and neutrophil infiltration/activity 2 days after AMI were attenuated in knockout mice with endothelial GC-A deletion and unaltered in knockout mice with endothelial cGKI deletion. Molecular studies revealed that hypoxia and tumor necrosis factor-α, conditions accompanying AMI, reduce the endothelial expression of cGKI and enhance cGMP-stimulated phosphodiesterase 2A (PDE2A) levels. Real-time cAMP measurements in endothelial microdomains using a novel fluorescence resonance energy transfer biosensor revealed that PDE2 mediates NP/cGMP-driven decreases of submembrane cAMP levels. Finally, intravital microscopy studies of the mouse cremaster microcirculation showed that tumor necrosis factor-α-induced endothelial NP/GC-A/cGMP/PDE2 signaling impairs endothelial barrier functions. CONCLUSIONS: Hypoxia and cytokines, such as tumor necrosis factor-α, modify the endothelial postreceptor signaling pathways of NPs, with downregulation of cGKI, induction of PDE2A, and altered cGMP/cAMP cross talk. Increased expression of PDE2 can mediate hyperpermeability effects of paracrine endothelial NP/GC-A/cGMP signaling and facilitate neutrophil extravasation during the early phase after MI.


Subject(s)
Atrial Natriuretic Factor/pharmacology , Endothelium, Vascular/metabolism , Inflammation Mediators/metabolism , Myocardial Infarction/metabolism , Animals , Atrial Natriuretic Factor/biosynthesis , Endothelium, Vascular/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation/metabolism , Mice , Mice, Knockout , Mice, Transgenic , Tumor Necrosis Factor-alpha/pharmacology
15.
J Biol Chem ; 291(8): 4091-106, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26699196

ABSTRACT

The aim of this study was to characterize the interaction of KYSE-410, an esophageal squamous cell carcinoma cell line, and fibroblasts with respect to the extracellular matrix component hyaluronan (HA) and chemokine expression. KYSE-410 cells induced the mRNA expression of HA synthase 2 (Has2) in normal skin fibroblasts (SF) only in direct co-cultures. Parallel to Has2 mRNA, Has2 antisense RNA (Has2os2) was up-regulated in co-cultures. Knockdown of LEF1, a downstream target of Wnt signaling, abrogated Has2 and Has2os2 induction. After knockdown of Has2 in SF, significantly less α-smooth muscle actin expression was detected in co-cultures. Moreover, it was investigated whether the phenotype of KYSE-410 was affected in co-culture with SF and whether Has2 knockdown in SF had an impact on KYSE-410 cells in co-culture. However, no effects on epithelial-mesenchymal transition markers, proliferation, and migration were detected. In addition to Has2 mRNA, the chemokine CCL5 was up-regulated and CCL11 was down-regulated in SF in co-culture. Furthermore, co-cultures of KYSE-410 cells and cancer-associated fibroblasts (CAF) were investigated. Similar to SF, Has2 and Ccl5 were up-regulated and Ccl11 was down-regulated in CAF in co-culture. Importantly and in contrast to SF, inhibiting HA synthesis by 4-methylumbelliferone abrogated the effect of co-culture on Ccl5 in CAF. Moreover, HA was found to promote adhesion of CD4(+) but not CD8(+) cells to xenogaft tumor tissues. In conclusion, direct co-culture of esophageal squamous cell carcinoma and fibroblasts induced stromal HA synthesis via Wnt/LEF1 and altered the chemokine profile of stromal fibroblasts, which in turn may affect the tumor immune response.


Subject(s)
Carcinoma, Squamous Cell/metabolism , Chemokine CCL11/biosynthesis , Chemokine CCL5/biosynthesis , Esophageal Neoplasms/metabolism , Fibroblasts/metabolism , Hyaluronic Acid/biosynthesis , Neoplasm Proteins/metabolism , Animals , CD4-Positive T-Lymphocytes/metabolism , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Chemokine CCL11/genetics , Chemokine CCL5/genetics , Coculture Techniques , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Fibroblasts/pathology , Glucuronosyltransferase/genetics , Glucuronosyltransferase/metabolism , Humans , Hyaluronan Synthases , Hyaluronic Acid/genetics , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Mice , Mice, Nude , Neoplasm Proteins/genetics , Wnt Signaling Pathway
16.
Circulation ; 134(11): 817-32, 2016 Sep 13.
Article in English | MEDLINE | ID: mdl-27559042

ABSTRACT

BACKGROUND: Myocardial fibrosis is a feature of many cardiac diseases. We used proteomics to profile glycoproteins in the human cardiac extracellular matrix (ECM). METHODS: Atrial specimens were analyzed by mass spectrometry after extraction of ECM proteins and enrichment for glycoproteins or glycopeptides. RESULTS: ECM-related glycoproteins were identified in left and right atrial appendages from the same patients. Several known glycosylation sites were confirmed. In addition, putative and novel glycosylation sites were detected. On enrichment for glycoproteins, peptides of the small leucine-rich proteoglycan decorin were identified consistently in the flowthrough. Of all ECM proteins identified, decorin was found to be the most fragmented. Within its protein core, 18 different cleavage sites were identified. In contrast, less cleavage was observed for biglycan, the most closely related proteoglycan. Decorin processing differed between human ventricles and atria and was altered in disease. The C-terminus of decorin, important for the interaction with connective tissue growth factor, was detected predominantly in ventricles in comparison with atria. In contrast, atrial appendages from patients in persistent atrial fibrillation had greater levels of full-length decorin but also harbored a cleavage site that was not found in atrial appendages from patients in sinus rhythm. This cleavage site preceded the N-terminal domain of decorin that controls muscle growth by altering the binding capacity for myostatin. Myostatin expression was decreased in atrial appendages of patients with persistent atrial fibrillation and hearts of decorin null mice. A synthetic peptide corresponding to this decorin region dose-dependently inhibited the response to myostatin in cardiomyocytes and in perfused mouse hearts. CONCLUSIONS: This proteomics study is the first to analyze the human cardiac ECM. Novel processed forms of decorin protein core, uncovered in human atrial appendages, can regulate the local bioavailability of antihypertrophic and profibrotic growth factors.


Subject(s)
Atrial Fibrillation/metabolism , Decorin , Myostatin/antagonists & inhibitors , Peptides , Animals , Atrial Fibrillation/drug therapy , Atrial Fibrillation/pathology , Atrial Fibrillation/physiopathology , Decorin/chemistry , Decorin/metabolism , Decorin/pharmacology , Female , HEK293 Cells , Heart Atria/metabolism , Heart Atria/physiopathology , Heart Ventricles/metabolism , Heart Ventricles/physiopathology , Humans , Male , Mice , Mice, Mutant Strains , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Myostatin/metabolism , Peptides/chemical synthesis , Peptides/chemistry , Peptides/metabolism , Peptides/pharmacology , Proteomics
17.
Int J Cancer ; 141(4): 791-804, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28493326

ABSTRACT

Epidemiological studies have detected a higher incidence of various tumour entities in diabetic patients. However, the underlying mechanisms remain insufficiently understood. Glucose-derived pericellular and extracellular hyaluronan (HA) promotes tumour progression and development. In our study, we tested the hypothesis that a diabetic metabolic state, characterised by hyperglycaemia and concomitant aberrant insulin signalling, stimulates tumour progression via the induction of HA synthesis. In a streptozotocin-induced diabetic nude mouse tumour xenograft model, hyperglycaemia and lack of insulin caused an increased formation of tumour-associated HA-matrix, which in turn accelerated tumour progression and neoangiogenesis. This process was effectively attenuated by treatment with 4-methylumbelliferone, a pharmacological inhibitor of HA-synthesis. To define the mechanisms behind these in vivo observations, we investigated the impact of hyperglycaemia and insulin on the glucose metabolism in oesophageal squamous cell cancer cells (ESCC). Hyperglycaemia induced HA synthesis while insulin diminished HA production by directing glucose metabolites to glycolysis. Vice versa, inhibition of glycolysis, either by knockdown of the glycolytic key enzyme phosphofructokinase or by an experimental abrogation of insulin signalling (knockdown of the insulin receptor and long-term treatment with insulin) augmented HA synthesis. Consequently, these processes induced invasion, anchorage-independent growth and adhesion of ESCC to endothelial cells in vitro. Thus, the cellular shift in glucose usage from catabolism of glucose to anabolism of HA driven by hyperglycaemia and insulin resistance may represent an important link between diabetes and cancer progression. Hence, therapeutical inhibition of HA synthesis may represent a promising approach for tumour treatment in diabetic patients.


Subject(s)
Carcinoma, Squamous Cell/pathology , Diabetes Mellitus, Experimental/metabolism , Esophageal Neoplasms/pathology , Hyaluronic Acid/metabolism , Hyperglycemia/complications , Insulin/metabolism , Animals , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Diabetes Mellitus, Experimental/complications , Disease Progression , Esophageal Neoplasms/metabolism , Esophageal Squamous Cell Carcinoma , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Signal Transduction
18.
Circ Res ; 116(8): e57-68, 2015 Apr 10.
Article in English | MEDLINE | ID: mdl-25740843

ABSTRACT

RATIONALE: Lymphotoxin ß receptor (LTbR) regulates immune cell trafficking and communication in inflammatory diseases. However, the role of LTbR in atherosclerosis is still unclear. OBJECTIVE: The aim of this study was to elucidate the role of LTbR in atherosclerosis. METHODS AND RESULTS: After 15 weeks of feeding a Western-type diet, mice double-deficient in apolipoprotein E and LTbR (apoE(-/-)/LTbR(-/-)) exhibited lower aortic plaque burden than did apoE(-/-) littermates. Macrophage content at the aortic root and in the aorta was reduced, as determined by immunohistochemistry and flow cytometry. In line with a decrease in plaque inflammation, chemokine (C-C motif) ligand 5 (Ccl5) and other chemokines were transcriptionally downregulated in aortic tissue from apoE(-/-)/LTbR(-/-) mice. Moreover, bone marrow chimeras demonstrated that LTbR deficiency in hematopoietic cells mediated the atheroprotection. Furthermore, during atheroprogression, apoE(-/-) mice exhibited increased concentrations of cytokines, for example, Ccl5, whereas apoE(-/-)/LTbR(-/-) mice did not. Despite this decreased plaque macrophage content, flow cytometric analysis showed that the numbers of circulating lymphocyte antigen 6C (Ly6C)(low) monocytes were markedly elevated in apoE(-/-)/LTbR(-/-) mice. The influx of these cells into atherosclerotic lesions was significantly reduced, whereas apoptosis and macrophage proliferation in atherosclerotic lesions were unaffected. Gene array analysis pointed to chemokine (C-C motif) receptor 5 as the most regulated pathway in isolated CD115(+) cells in apoE(-/-)/LTbR(-/-) mice. Furthermore, stimulating monocytes from apoE(-/-) mice with agonistic anti-LTbR antibody or the natural ligand lymphotoxin-α1ß2, increased Ccl5 mRNA expression. CONCLUSIONS: These findings suggest that LTbR plays a role in macrophage-driven inflammation in atherosclerotic lesions, probably by augmenting the Ccl5-mediated recruitment of monocytes.


Subject(s)
Aorta/drug effects , Aortic Diseases/prevention & control , Apolipoproteins E/deficiency , Atherosclerosis/prevention & control , Lymphotoxin beta Receptor/deficiency , Animals , Antigens, Ly/metabolism , Aorta/immunology , Aorta/metabolism , Aorta/pathology , Aortic Diseases/diagnosis , Aortic Diseases/metabolism , Aortic Diseases/pathology , Apolipoproteins E/genetics , Atherosclerosis/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Bone Marrow Transplantation , Cells, Cultured , Chemokine CCL5/genetics , Chemokine CCL5/metabolism , Chemotaxis , Disease Models, Animal , Gene Expression Regulation , Lymphotoxin alpha1, beta2 Heterotrimer/metabolism , Lymphotoxin beta Receptor/genetics , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Plaque, Atherosclerotic , Time Factors , Transcription, Genetic , Transplantation Chimera
19.
Arterioscler Thromb Vasc Biol ; 36(5): e41-50, 2016 05.
Article in English | MEDLINE | ID: mdl-27034473

ABSTRACT

OBJECTIVE: Thrombin signaling promotes atherosclerosis by initiating inflammatory events indirectly through platelet activation and directly via protease-activated receptors. Therefore, endogenous thrombin inhibitors may be relevant modulators of atheroprogression and cardiovascular risk. In addition, endogenous thrombin inhibitors may affect the response to non-vitamin K-dependent oral anticoagulants. Here, the question was addressed whether the small leucine-rich proteoglycan biglycan acts as an endogenous thrombin inhibitor in atherosclerosis through activation of heparin cofactor II. APPROACH AND RESULTS: Biglycan concentrations were elevated in the plasma of patients with acute coronary syndrome and in male Apolipoprotein E-deficient (ApoE(-/-)) mice. Biglycan was detected in the glycocalyx of capillaries and the subendothelial matrix of arterioles of ApoE(-/-) mice and in atherosclerotic plaques. Thereby a vascular compartment is provided that may mediate the endothelial and subendothelial activation of heparin cofactor II through biglycan. ApoE and Bgn double-deficient (ApoE(-/-)/Bgn(-/0)) mice showed higher activity of circulating thrombin, increased platelet activation and platelet adhesion in vivo, supporting a role of biglycan in balancing thrombin activity. Furthermore, concentrations of circulating cytokines and aortic macrophage content were elevated in ApoE(-/-)/Bgn(-/0) mice, suggesting a proinflammatory phenotype. Elevated platelet activation and macrophage accumulation were reversed by treating ApoE(-/-)/Bgn(-/0) mice with the thrombin inhibitor argatroban. Ultimately, ApoE(-/-)/Bgn(-/0) mice developed aggravated atherosclerosis. CONCLUSIONS: The present results indicate that biglycan plays a previously unappreciated protective role during the progression of atherosclerosis by inhibiting thrombin activity, platelet activation, and finally macrophage-mediated plaque inflammation.


Subject(s)
Aorta/metabolism , Aortic Diseases/metabolism , Apolipoproteins E/deficiency , Atherosclerosis/metabolism , Biglycan/deficiency , Inflammation/metabolism , Thrombin/metabolism , Acute Coronary Syndrome/blood , Animals , Antithrombins/pharmacology , Aorta/drug effects , Aorta/pathology , Aortic Diseases/blood , Aortic Diseases/genetics , Aortic Diseases/prevention & control , Apolipoproteins E/genetics , Atherosclerosis/blood , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Biglycan/blood , Biglycan/genetics , Cytokines/blood , Disease Models, Animal , Genotype , Heparin Cofactor II/metabolism , Humans , Inflammation/blood , Inflammation/genetics , Inflammation/prevention & control , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Plaque, Atherosclerotic , Platelet Activation , Time Factors
20.
Arterioscler Thromb Vasc Biol ; 36(2): e9-16, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26586662

ABSTRACT

OBJECTIVE: Hyaluronan (HA) is a polymeric glucosaminoglycan that forms a provisional extracellular matrix in diseased vessels. HA is synthesized by 3 different HA synthases (HAS1, HAS2, and HAS3). Aim of this study was to unravel the role of the HAS3 isoenzyme during experimental neointimal hyperplasia. APPROACH AND RESULTS: Neointimal hyperplasia was induced in Has3-deficient mice by ligation of the carotid artery. HA in the media of Has3-deficient mice was decreased 28 days after ligation, and neointimal hyperplasia was strongly inhibited. However, medial and luminal areas were unaffected. Cell density, proliferation, and apoptosis were not altered, suggesting a proportional decrease of both, the number of cells and extracellular matrix. In addition, endothelial function as determined by acetylcholine-induced relaxation of aortic rings, immunoblotting of endothelial nitric oxide synthase, and arterial blood pressure were not affected. Furthermore, the oxidative stress response was not affected as determined in total protein extracts from aortae. Transcriptome analysis comparing control versus ligated carotid arteries hinted toward a mitigated differential regulation of various signaling pathways in Has3-deficient mice in response to ligation that were related to vascular smooth muscle cell (VSMC) migration, including focal adhesions, integrins, mitogen-activated protein kinase, and phosphatidylinositol signaling system. Lentiviral overexpression of HAS3 in VSMC supported the migratory phenotype of VSMC in response to platelet-derived growth factor BB in vitro. Accordingly, knockdown of HAS3 reduced the migratory response to platelet-derived growth factor BB and in addition decreased the expression of PDGF-B mRNA. CONCLUSIONS: HAS3-mediated HA synthesis after vessel injury supports seminal signaling pathways in activation of VSMC, increases platelet-derived growth factor BB-mediated migration, and in turn enhances neointimal hyperplasia in vivo.


Subject(s)
Carotid Artery Diseases/enzymology , Glucuronosyltransferase/deficiency , Muscle, Smooth, Vascular/enzymology , Myocytes, Smooth Muscle/enzymology , Neointima , Animals , Becaplermin , Carotid Artery Diseases/genetics , Carotid Artery Diseases/pathology , Carotid Artery, Common/enzymology , Carotid Artery, Common/pathology , Cell Movement , Cell Proliferation , Cells, Cultured , Extracellular Matrix/metabolism , Female , Gene Deletion , Gene Expression Regulation , Genotype , Glucuronosyltransferase/genetics , Hyaluronan Synthases , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Phenotype , Proto-Oncogene Proteins c-sis/genetics , Proto-Oncogene Proteins c-sis/metabolism , Proto-Oncogene Proteins c-sis/pharmacology , Signal Transduction , Transcription, Genetic , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL