Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Publication year range
1.
Nature ; 629(8013): 851-860, 2024 May.
Article in English | MEDLINE | ID: mdl-38560995

ABSTRACT

Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.


Subject(s)
Birds , Evolution, Molecular , Genome , Phylogeny , Animals , Birds/genetics , Birds/classification , Birds/anatomy & histology , Brain/anatomy & histology , Extinction, Biological , Genome/genetics , Genomics , Population Density , Male , Female
3.
Nature ; 587(7833): 252-257, 2020 11.
Article in English | MEDLINE | ID: mdl-33177665

ABSTRACT

Whole-genome sequencing projects are increasingly populating the tree of life and characterizing biodiversity1-4. Sparse taxon sampling has previously been proposed to confound phylogenetic inference5, and captures only a fraction of the genomic diversity. Here we report a substantial step towards the dense representation of avian phylogenetic and molecular diversity, by analysing 363 genomes from 92.4% of bird families-including 267 newly sequenced genomes produced for phase II of the Bird 10,000 Genomes (B10K) Project. We use this comparative genome dataset in combination with a pipeline that leverages a reference-free whole-genome alignment to identify orthologous regions in greater numbers than has previously been possible and to recognize genomic novelties in particular bird lineages. The densely sampled alignment provides a single-base-pair map of selection, has more than doubled the fraction of bases that are confidently predicted to be under conservation and reveals extensive patterns of weak selection in predominantly non-coding DNA. Our results demonstrate that increasing the diversity of genomes used in comparative studies can reveal more shared and lineage-specific variation, and improve the investigation of genomic characteristics. We anticipate that this genomic resource will offer new perspectives on evolutionary processes in cross-species comparative analyses and assist in efforts to conserve species.


Subject(s)
Birds/classification , Birds/genetics , Genome/genetics , Genomics/methods , Genomics/standards , Phylogeny , Animals , Chickens/genetics , Conservation of Natural Resources , Datasets as Topic , Finches/genetics , Humans , Selection, Genetic/genetics , Synteny/genetics
4.
Proc Natl Acad Sci U S A ; 120(7): e2201945119, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36745783

ABSTRACT

Despite evidence of declining biosphere integrity, we currently lack understanding of how the functional diversity associated with changes in abundance among ecological communities has varied over time and before widespread human disturbances. We combine morphological, ecological, and life-history trait data for >260 extant bird species with genomic-based estimates of changing effective population size (Ne) to quantify demographic-based shifts in avian functional diversity over the past million years and under pre-anthropogenic climate warming. We show that functional diversity was relatively stable over this period, but underwent significant changes in some key areas of trait space due to changing species abundances. Our results suggest that patterns of population decline over the Pleistocene have been concentrated in particular regions of trait space associated with extreme reproductive strategies and low dispersal ability, consistent with an overall erosion of functional diversity. Further, species most sensitive to climate warming occupied a relatively narrow region of functional space, indicating that the largest potential population increases and decreases under climate change will occur among species with relatively similar trait sets. Overall, our results identify fluctuations in functional space of extant species over evolutionary timescales and represent the demographic-based vulnerability of different regions of functional space among these taxa. The integration of paleodemographic dynamics with functional trait data enhances our ability to quantify losses of biosphere integrity before anthropogenic disturbances and attribute contemporary biodiversity loss to different drivers over time.


Subject(s)
Biodiversity , Biota , Humans , Animals , Time Factors , Birds/genetics , Climate Change , Ecosystem
5.
Proc Biol Sci ; 289(1981): 20221102, 2022 08 31.
Article in English | MEDLINE | ID: mdl-35975440

ABSTRACT

The immense concentrations of vertebrate species in tropical mountains remain a prominent but unexplained pattern in biogeography. A long-standing hypothesis suggests that montane biodiversity hotspots result from endemic species aggregating within ecologically stable localities. Here, the persistence of ancient lineages coincides with frequent speciation events, making such areas both 'cradles' (where new species arise) and 'museums' (where old species survive). Although this hypothesis refers to processes operating at the scale of valleys, it remains supported primarily by patterns generated from coarse-scale distribution data. Using high-resolution occurrence and phylogenetic data on Andean hummingbirds, we find that old and young endemic species are not spatially aggregated. The young endemic species tend to have non-overlapping distributions scattered along the Andean treeline, a long and narrow habitat where populations easily become fragmented. By contrast, the old endemic species have more aggregated distributions, but mainly within pockets of cloud forests at lower elevations than the young endemic species. These findings contradict the premise that biogeographical cradles and museums should overlap in valley systems where pockets of stable climate persist through periods of climate change. Instead, Andean biodiversity hotspots may derive from large-scale fluctuating climate complexity in conjunction with local-scale variability in available area and habitat connectivity.


Subject(s)
Biodiversity , Museums , Ecosystem , Forests , Phylogeny
7.
J Anim Ecol ; 89(4): 1094-1108, 2020 04.
Article in English | MEDLINE | ID: mdl-31873967

ABSTRACT

Strong relationships between morphological and ecological characters are commonly predicted to reflect the association between form and function, with this hypothesis being well supported in restricted taxonomic and geographical contexts. Conversely, among broader sets of species, ecological variables have been shown to have limited power to explain morphological variation. To understand these apparent discrepancies, for a large and globally distributed passerine radiation, we test whether (a) the character states of four ecological variables (foraging mode, diet, strata and habitat) have different morphological optima, (b) ecological variables explain substantial variance in morphology and (c) ecological character states can be accurately predicted from morphology. We collected 10 linear morphological measurements for 782 species of corvoid passerines, and assessed (a) the fit of models of continuous trait evolution with different morphological optima for each ecological character state, (b) variation in morphological traits among ecological character states using phylogenetically corrected regressions and (c) the accuracy of morphological traits in predicting species-level membership of ecological character states using linear discriminant analysis (LDA). Models of morphological evolution with different ecological optima were well supported across numerous morphological axes, corresponding with significant differences in trait distributions among ecological character states. LDA also showed that membership of the ecological categories can be predicted with relatively high accuracy by morphology. In contrast to these findings, ecological variables explain limited amounts of variation in morphological traits. For a global radiation of passerine birds, we confirm that the generation of morphological variation is generally consistent with ecological selection pressures, but that ecological characters are of limited utility in explaining morphological differences among species. Although selection towards different optima means that membership of ecological character states tend to be well predicted by morphology, the overall morphospace of individual ecological character states tend to be broad, implying that morphology can evolve in multiple ways in response to similar selection pressures. Extensive variation in morphological adaptations among similar ecological strategies is likely to be a widespread phenomenon across the tree of life.


Subject(s)
Ecosystem , Passeriformes , Adaptation, Physiological , Animals , Biological Evolution , Phenotype , Phylogeny
8.
Mol Phylogenet Evol ; 130: 346-356, 2019 01.
Article in English | MEDLINE | ID: mdl-30321696

ABSTRACT

The babblers are a diverse group of passerine birds comprising 452 species. The group was long regarded as a "scrap basket" in taxonomic classification schemes. Although several studies have assessed the phylogenetic relationships for subsets of babblers during the past two decades, a comprehensive phylogeny of this group has been lacking. In this study, we used five mitochondrial and seven nuclear loci to generate a dated phylogeny for babblers. This phylogeny includes 402 species (ca. 89% of the overall clade) from 75 genera (97%) and all five currently recognized families, providing a robust basis for taxonomic revision. Our phylogeny supports seven major clades and reveals several non-monophyletic genera. Divergence time estimates indicate that the seven major clades diverged around the same time (18-20 million years ago, Ma) in the early Miocene. We use the phylogeny in a consistent way to propose a new taxonomy, with seven families and 64 genera of babblers, and a new linear sequence of names.


Subject(s)
Passeriformes/classification , Phylogeny , Animals , DNA, Mitochondrial/genetics , Likelihood Functions , Passeriformes/genetics , Time Factors
9.
Proc Biol Sci ; 285(1893): 20182181, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30963909

ABSTRACT

Why diversification rates vary so extensively across the tree of life remains an important yet unresolved issue in biology. Two prominent and potentially independent factors proposed to explain these trends reflect the capacity of lineages to expand into new areas of (i) geographical or (ii) ecological space. Here, we present the first global assessment of how diversification rates vary as a consequence of geographical and ecological expansion, studying these trends among 15 speciose passerine families (together approximately 750 species) using phylogenetic path analysis. We find that relative slowdowns in diversification rates characterize families that have accumulated large numbers of co-occurring species (at the 1° scale) within restricted geographical areas. Conversely, more constant diversification through time is prevalent among families in which species show limited range overlap. Relative co-occurrence is itself also a strong predictor of ecological divergence (here approximated by morphological divergence among species); however, once the relationship between co-occurrence and diversification rates have been accounted for, increased ecological divergence is an additional explanatory factor accounting for why some lineages continue to diversify towards the present. We conclude that opportunities for prolonged diversification are predominantly determined by continued geographical range expansion and to a lesser degree by ecological divergence among lineages.


Subject(s)
Animal Distribution , Genetic Speciation , Songbirds/anatomy & histology , Songbirds/physiology , Animals , Phylogeny
10.
Mol Phylogenet Evol ; 124: 100-105, 2018 07.
Article in English | MEDLINE | ID: mdl-29526804

ABSTRACT

Detailed knowledge of species limits is an essential component of the study of biodiversity. Although accurate species delimitation usually requires detailed knowledge of both genetic and phenotypic variation, such variation may be limited or unavailable for some groups. In this study, we reconstruct a molecular phylogeny for all currently recognized species and subspecies of Australasian shrikethrushes (Colluricincla), including the first sequences of the poorly known C. tenebrosa. Using a novel method for species delimitation, the multi-rate Poisson Tree Process (mPTP), in concordance with the phylogenetic data, we estimate species limits in this genetically diverse, but phenotypically subtly differentiated complex of birds. In line with previous studies, we find that one species, the little shrikethrush (C. megarhyncha) is characterized by deep divergences among populations. Delimitation results suggest that these clades represent distinct species and we consequently propose a new classification. Furthermore, our findings suggest that C. megarhyncha melanorhyncha of Biak Island does not belong in this genus, but is nested within the whistlers (Pachycephala) as sister to P. phaionota. This study represents a useful example of species delimitation when phenotypic variation is limited or poorly defined.


Subject(s)
Passeriformes/classification , Phylogeny , Pigmentation/genetics , Animals , Australia , Bayes Theorem , DNA, Mitochondrial/genetics , Geography , Passeriformes/genetics , Phenotype , Species Specificity , Time Factors
11.
Mol Phylogenet Evol ; 118: 172-183, 2018 01.
Article in English | MEDLINE | ID: mdl-28834700

ABSTRACT

The Long-billed Tailorbird (Artisornis moreaui), one of Africa's rarest birds, has a strikingly disjunct distribution, the origin of which has long puzzled biogeographers. One small population (subspecies moreaui) occurs in sub-montane forest in the East Usambara Mountains, a sky island near the coast of northern Tanzania, and another (subspecies sousae) on Serra Jeci in northwestern Mozambique, 950km away. The African Tailorbird, the putative sister-species of Long-billed Tailorbird, also occurs in the East Usambara Mountains and on Serra Jeci, but in addition occupies all the Eastern Arc Mountain forests between these disjunct sites. Stuart (1981) hypothesized that the two tailorbird distributions could be explained by strong ecological competition, with African Tailorbird populations having eliminated Long-billed Tailorbird populations via competitive exclusion in montane forests between the East Usambara and Serra Jeci. If such competitive exclusion explains these geographic distributions, the co-occurrence of the two species in the East Usambara and at Serra Jeci may be ephemeral, with the status of Long-billed Tailorbird especially in doubt. We sought to (1) determine whether the two species of African tailorbirds are indeed sister-species, and (2) test predictions from Stuart's (1981) competitive exclusion hypothesis using genetic data. Phylogenetic analyses of our seven gene dataset (3 mtDNA, 4 introns; 4784bp) indeed place these two species together in the genus Artisornis. Instead of finding shallow divergence among African Tailorbird populations and deep divergence between Long-billed Tailorbird populations as expected from Stuart's hypothesis, we recover deep genetic divergence and geographic structure among populations of both tailorbird species. This result is consistent with long-term co-existence of the two species at East Usambara and Serra Jeci. Observational data from both the East Usambara and Serra Jeci suggest that the two species have diverged in use of forest canopy strata. From a conservation standpoint, our results suggest that extinction of the Long-billed Tailorbird as a function of competition with African Tailorbird is highly unlikely, and should not be viewed as imminent. Threats to its survival are instead anthropogenic, and conservation measures should take this into account. Finally, our empirical results suggest that mis-specification of the branch-length prior in Bayesian analyses of mitochondrial DNA data can have a profound effect on the overall tree-length (sum of branch-lengths), whereas the topology and support values tend to remain more stable. In contrast, mis-specification of the branch-length prior had a lesser impact on all aspects of the nuclear-only DNA analyses. This problem may be exacerbated when mitochondrial and nuclear DNA analyses are combined in a total evidence approach.


Subject(s)
Passeriformes/classification , Phylogeography , Statistics as Topic , Animals , Bayes Theorem , DNA, Mitochondrial/genetics , Genetic Loci , Mozambique , Passeriformes/genetics , Phylogeny , Tanzania
12.
Mol Phylogenet Evol ; 127: 367-375, 2018 10.
Article in English | MEDLINE | ID: mdl-29625229

ABSTRACT

The widespread Old World avian family Locustellidae ('grassbirds and allies') comprises 62 extant species in 11 genera. In the present study, we used one mitochondrial and, for most species, four nuclear loci to infer the phylogeny of this family. We analysed 59 species, including the five previously unsampled genera plus two genera that had not before been analysed in a densely sampled dataset. This study revealed extensive disagreement with current taxonomy; the genera Bradypterus, Locustella, Megalurus, Megalurulus and Schoenicola were all found to be non-monophyletic. Non-monophyly was particularly pronounced for Megalurus, which was widely scattered across the tree. Three of the five monotypic genera (Amphilais, Buettikoferella and Malia) were nested within other genera; one monotypic genus (Chaetornis) formed a clade with one of the two species of Schoenicola; whereas the position of the fifth monotypic genus (Elaphrornis) was unresolved. Robsonius was confirmed as sister to the other genera. We propose a phylogenetically informed revision of genus-level taxonomy, including one new generic name. Finally, we highlight several non-monophyletic species complexes and deep intra-species divergences that point to conflict in taxonomy and suggest an underestimation of current species diversity in this group.


Subject(s)
Passeriformes/classification , Phylogeny , Animals , Bayes Theorem , Cell Nucleus , Cytochromes b/genetics , Sound Spectrography , Species Specificity , Vocalization, Animal
13.
Mol Phylogenet Evol ; 107: 516-529, 2017 02.
Article in English | MEDLINE | ID: mdl-28017855

ABSTRACT

With nearly 300 species, the infraorder Meliphagides represents one of the largest and most conspicuous Australasian bird radiations. Although the group has been the focus of a number of recent phylogenetic studies, a comprehensive species-level phylogenetic hypothesis is still lacking. This has impeded the assessment of broad-scale evolutionary, biogeographic and ecological hypotheses. In the present study, we use a supermatrix approach including five mitochondrial and four nuclear markers to infer a time-calibrated phylogeny of the Meliphagides. Our phylogeny, which includes 286 of the 289 (99%) currently recognized species, is largely congruent with previous estimates. However, the addition of 60 newly sequenced species reveals some novel relationships. Our biogeographic analyses suggest an Australian origin for the group in the early Oligocene (31.3Mya, 95% HPD 25.2-38.2Mya). In addition, we find that dispersal events out of Australia have been numerous and frequent, particularly to New Guinea, which has also been the source of multiple back-colonizations to the Australian mainland. The phylogeny provides an important framework for studying a wide variety of macroecological and macroevolutionary themes, including character evolution, origin and timing of diversification, biogeographic patterns and species responses to climate change.


Subject(s)
Passeriformes/classification , Phylogeny , Phylogeography , Animals , Base Sequence , Bayes Theorem , Calibration , Databases, Genetic , Evolution, Molecular , Passeriformes/genetics , Time Factors
14.
BMC Evol Biol ; 16(1): 230, 2016 10 26.
Article in English | MEDLINE | ID: mdl-27782796

ABSTRACT

BACKGROUND: Pigeons and doves (Columbiformes) are one of the oldest and most diverse extant lineages of birds. However, the nature and timing of the group's evolutionary radiation remains poorly resolved, despite recent advances in DNA sequencing and assembly and the growing database of pigeon mitochondrial genomes. One challenge has been to generate comparative data from the large number of extinct pigeon lineages, some of which are morphologically unique and therefore difficult to place in a phylogenetic context. RESULTS: We used ancient DNA and next generation sequencing approaches to assemble complete mitochondrial genomes for eleven pigeons, including the extinct Ryukyu wood pigeon (Columba jouyi), the thick-billed ground dove (Alopecoenas salamonis), the spotted green pigeon (Caloenas maculata), the Rodrigues solitaire (Pezophaps solitaria), and the dodo (Raphus cucullatus). We used a Bayesian approach to infer the evolutionary relationships among 24 species of living and extinct pigeons and doves. CONCLUSIONS: Our analyses indicate that the earliest radiation of the Columbidae crown group most likely occurred during the Oligocene, with continued divergence of major clades into the Miocene, suggesting that diversification within the Columbidae occurred more recently than has been reported previously.


Subject(s)
Biological Evolution , Columbidae/genetics , Genome, Mitochondrial , Animals , Base Sequence , Bayes Theorem , Columbidae/classification , Extinction, Biological , Genetic Variation , High-Throughput Nucleotide Sequencing , Phylogeny , Sequence Analysis, DNA
15.
Proc Biol Sci ; 283(1844)2016 12 14.
Article in English | MEDLINE | ID: mdl-27974521

ABSTRACT

New species are sometimes known to arise as a consequence of the dispersal and establishment of populations in new areas. It has nevertheless been difficult to demonstrate an empirical link between rates of dispersal and diversification, partly because dispersal abilities are challenging to quantify. Here, using wing morphology as a proxy for dispersal ability, we assess this relationship among the global radiation of corvoid birds. We found that species distributions are associated with wing shape. Widespread species (occurring on both islands and continents), and those that are migratory, exhibit wing morphologies better adapted to long-distance flight compared with sedentary continental or insular forms. Habitat preferences also strongly predict wing form, with species that occur in canopies and/or areas of sparse vegetation possessing dispersive morphologies. By contrast, we found no significant differences in diversification rates among either the migratory or habitat classifications, but species distributed in island settings diversify at higher rates than those found on continents. This latter finding may reflect the elevated dispersal capabilities of widespread taxa, facilitating the radiation of these lineages across insular areas. However, as the correlations between wing morphology and diversification rates were consistently weak throughout our dataset, this suggests that historical patterns of diversification are not particularly well reflected by present-day wing morphology.


Subject(s)
Animal Distribution , Ecosystem , Passeriformes/anatomy & histology , Wings, Animal/anatomy & histology , Animals , Biological Evolution , Passeriformes/classification , Phylogeny
16.
Proc Biol Sci ; 283(1824)2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26842573

ABSTRACT

Ecological communities that experience stable climate conditions have been speculated to preserve more specialized interspecific associations and have higher proportions of smaller ranged species (SRS). Thus, areas with disproportionally large numbers of SRS are expected to coincide geographically with a high degree of community-level ecological specialization, but this suggestion remains poorly supported with empirical evidence. Here, we analysed data for hummingbird resource specialization, range size, contemporary climate, and Late Quaternary climate stability for 46 hummingbird-plant mutualistic networks distributed across the Americas, representing 130 hummingbird species (ca 40% of all hummingbird species). We demonstrate a positive relationship between the proportion of SRS of hummingbirds and community-level specialization, i.e. the division of the floral niche among coexisting hummingbird species. This relationship remained strong even when accounting for climate, furthermore, the effect of SRS on specialization was far stronger than the effect of specialization on SRS, suggesting that climate largely influences specialization through species' range-size dynamics. Irrespective of the exact mechanism involved, our results indicate that communities consisting of higher proportions of SRS may be vulnerable to disturbance not only because of their small geographical ranges, but also because of their high degree of specialization.


Subject(s)
Animal Distribution , Birds/physiology , Ecosystem , Magnoliopsida/physiology , Symbiosis , Animals , Central America , Climate , North America , South America
17.
Mol Phylogenet Evol ; 94(Pt A): 87-94, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26327328

ABSTRACT

The Corvides (previously referred to as the core Corvoidea) are a morphologically diverse clade of passerine birds comprising nearly 800 species. The group originated some 30 million years ago in the proto-Papuan archipelago, to the north of Australia, from where lineages have dispersed and colonized all of the world's major continental and insular landmasses (except Antarctica). During the last decade multiple species-level phylogenies have been generated for individual corvoid families and more recently the inter-familial relationships have been resolved, based on phylogenetic analyses using multiple nuclear loci. In the current study we analyse eight nuclear and four mitochondrial loci to generate a dated phylogeny for the majority of corvoid species. This phylogeny includes 667 out of 780 species (85.5%), 141 out of 143 genera (98.6%) and all 31 currently recognized families, thus providing a baseline for comprehensive macroecological, macroevolutionary and biogeographical analyses. Using this phylogeny we assess the temporal consistency of the current taxonomic classification of families and genera. By adopting an approach that enforces temporal consistency by causing the fewest possible taxonomic changes to currently recognized families and genera, we find the current familial classification to be largely temporally consistent, whereas that of genera is not.


Subject(s)
Passeriformes/classification , Passeriformes/genetics , Phylogeny , Animals , Australia , Cell Nucleus/genetics , DNA, Mitochondrial/genetics
18.
Oecologia ; 181(1): 225-33, 2016 May.
Article in English | MEDLINE | ID: mdl-26801494

ABSTRACT

The usual positive inter-specific relationship between range size and abundance of local populations can have notable exceptions in Afrotropical montane areas, where range-restricted bird species are unusually abundant. We tested how the area occupied locally by passerines and their geographic range size relate to local abundances along a tropical elevational gradient of Mt Cameroon, West-Central Africa. Data on bird assemblages were collected at six forested elevations (350, 650, 1100, 1500, 1850 m, 2200 m a.s.l.) using a standardised point count at 16 locations per elevation. Elevational ranges of birds were compiled from published sources and their geographic range sizes were determined as the occupancy of 1° x 1° grid cells. The observed relationship between local abundance and geographic range size within the entire passerine assemblage on Mt Cameroon disagrees with the most frequently reported positive pattern. However, the patterns differ among elevations, with positive trends of the abundance-range size relationship in lowland changing to negative trends towards higher elevations. Interestingly, the total assemblage abundances do not differ much among elevations and population size estimates of species occupying different parts of the gradient remain relatively constant. These patterns are caused by relatively high abundances of montane species, which might be a result of long-term ecological specialization and/or competitive release in species-poor montane locations and possibly facilitated by an extinction filter. Our data suggest that montane species' abilities to maintain dense populations might compensate for less area available near mountain tops and help these populations to circumvent extinction.


Subject(s)
Animal Distribution , Biodiversity , Passeriformes/physiology , Altitude , Animals , Cameroon , Extinction, Biological , Forests , Population Density
19.
Proc Natl Acad Sci U S A ; 109(17): 6620-5, 2012 Apr 24.
Article in English | MEDLINE | ID: mdl-22505736

ABSTRACT

Adaptive radiation is the rapid diversification of a single lineage into many species that inhabit a variety of environments or use a variety of resources and differ in traits required to exploit these. Why some lineages undergo adaptive radiation is not well-understood, but filling unoccupied ecological space appears to be a common feature. We construct a complete, dated, species-level phylogeny of the endemic Vangidae of Madagascar. This passerine bird radiation represents a classic, but poorly known, avian adaptive radiation. Our results reveal an initial rapid increase in evolutionary lineages and diversification in morphospace after colonizing Madagascar in the late Oligocene some 25 Mya. A subsequent key innovation involving unique bill morphology was associated with a second increase in diversification rates about 10 Mya. The volume of morphospace occupied by contemporary Madagascan vangas is in many aspects as large (shape variation)--or even larger (size variation)--as that of other better-known avian adaptive radiations, including the much younger Galapagos Darwin's finches and Hawaiian honeycreepers. Morphological space bears a close relationship to diet, substrate use, and foraging movements, and thus our results demonstrate the great extent of the evolutionary diversification of the Madagascan vangas.


Subject(s)
Adaptation, Physiological , Biological Evolution , Birds/physiology , Ecology , Animals , Birds/classification , Birds/genetics , Madagascar , Molecular Sequence Data , Phylogeny
20.
Proc Biol Sci ; 281(1777): 20131727, 2014 Feb 22.
Article in English | MEDLINE | ID: mdl-24403319

ABSTRACT

Many insular taxa possess extraordinary abilities to disperse but may differ in their abilities to diversify and compete. While some taxa are widespread across archipelagos, others have disjunct (relictual) populations. These types of taxa, exemplified in the literature by selections of unrelated taxa, have been interpreted as representing a continuum of expansions and contractions (i.e. taxon cycles). Here, we use molecular data of 35 out of 40 species of the avian genus Pachycephala (including 54 out of 66 taxa in Pachycephala pectoralis (sensu lato), to assess the spatio-temporal evolution of the group. We also include data on species distributions, morphology, habitat and elevational ranges to test a number of predictions associated with the taxon-cycle hypothesis. We demonstrate that relictual species persist on the largest and highest islands across the Indo-Pacific, whereas recent archipelago expansions resulted in colonization of all islands in a region. For co-occurring island taxa, the earliest colonists generally inhabit the interior and highest parts of an island, with little spatial overlap with later colonists. Collectively, our data support the idea that taxa continuously pass through phases of expansions and contractions (i.e. taxon cycles).


Subject(s)
Animal Distribution , Avian Proteins/genetics , Biological Evolution , Songbirds/classification , Songbirds/genetics , Animals , Asia, Southeastern , Australia , Evolution, Molecular , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Mitochondrial Proteins/genetics , Molecular Sequence Data , NADH Dehydrogenase/genetics , Nuclear Proteins/genetics , Ornithine Decarboxylase/genetics , Pacific Islands , Phylogeny , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL