Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Proc Natl Acad Sci U S A ; 119(28): e2204161119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35787052

ABSTRACT

The chemotaxis machinery of Escherichia coli has served as a model for exploring the molecular signaling mechanisms of transmembrane chemoreceptors known as methyl-accepting chemotaxis proteins (MCPs). Yet, fundamental questions about signal transmission through MCP molecules remain unanswered. Our work with the E. coli serine chemoreceptor Tsr has developed in vivo reporters that distinguish kinase-OFF and kinase-ON structures in the cytoplasmic methylation helix (MH) cap, which receives stimulus signals from an adjoining, membrane-proximal histidine kinase, adenylyl cyclases, MCPs, and phosphatases (HAMP) domain. The cytoplasmic helices of the Tsr homodimer interact mainly through packing interactions of hydrophobic residues at a and d heptad positions. We investigated the in vivo crosslinking properties of Tsr molecules bearing cysteine replacements at functionally tolerant g heptad positions in the N-terminal and C-terminal cap helices. Upon treatment of cells with bismaleimidoethane (BMOE), a bifunctional thiol-reagent, Tsr-G273C/Q504C readily formed a doubly crosslinked product in the presence of serine but not in its absence. Moreover, a serine stimulus combined with BMOE treatment during in vivo Förster resonance energy transfer-based kinase assays locked Tsr-G273C/Q504C in kinase-OFF output. An OFF-shifting lesion in MH1 (D269P) promoted the formation of the doubly crosslinked species in the absence of serine, whereas an ON-shifting lesion (G268P) suppressed the formation of the doubly crosslinked species. Tsr-G273C/Q504C also showed output-dependent crosslinking patterns in combination with ON-shifting and OFF-shifting adaptational modifications. Our results are consistent with a helix breathing-axial rotation-bundle repacking signaling mechanism and imply that in vivo crosslinking tools could serve to probe helix-packing transitions and their output consequences in other regions of the receptor molecule.


Subject(s)
Escherichia coli , Methyl-Accepting Chemotaxis Proteins/chemistry , Escherichia coli/metabolism , Membrane Proteins/metabolism , Methyl-Accepting Chemotaxis Proteins/metabolism , Models, Molecular , Serine/metabolism
2.
Proc Natl Acad Sci U S A ; 115(15): E3519-E3528, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29581254

ABSTRACT

Environmental awareness is an essential attribute for all organisms. The chemotaxis system of Escherichia coli provides a powerful experimental model for the investigation of stimulus detection and signaling mechanisms at the molecular level. These bacteria sense chemical gradients with transmembrane proteins [methyl-accepting chemotaxis proteins (MCPs)] that have an extracellular ligand-binding domain and intracellular histidine kinases, adenylate cyclases, methyl-accepting proteins, and phosphatases (HAMP) and signaling domains that govern locomotor behavior. HAMP domains are versatile input-output elements that operate in a variety of bacterial signaling proteins, including the sensor kinases of two-component regulatory systems. The MCP HAMP domain receives stimulus information and in turn modulates output signaling activity. This study describes mutants of the Escherichia coli serine chemoreceptor, Tsr, that identify a heptad-repeat structural motif (LLF) at the membrane-proximal end of the receptor signaling domain that is critical for HAMP output control. The homodimeric Tsr signaling domain is an extended, antiparallel, four-helix bundle that controls the activity of an associated kinase. The N terminus of each subunit adjoins the HAMP domain; the LLF residues lie at the C terminus of the methylation-helix bundle. We found, by using in vivo Förster resonance energy transfer kinase assays, that most amino acid replacements at any of the LLF residues abrogate chemotactic responses to serine and lock Tsr output in a kinase-active state, impervious to HAMP-mediated down-regulation. We present evidence that the LLF residues may function like a leucine zipper to promote stable association of the C-terminal signaling helices, thereby creating a metastable helix-packing platform for the N-terminal signaling helices that facilitates conformational control by the HAMP domains in MCP-family chemoreceptors.


Subject(s)
Chemoreceptor Cells/metabolism , Chemoreceptor Cells/physiology , Chemotaxis/physiology , Escherichia coli/genetics , Escherichia coli/metabolism , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Amino Acid Motifs , Bacterial Proteins/metabolism , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Histidine Kinase/genetics , Histidine Kinase/metabolism , Membrane Proteins/metabolism , Methyl-Accepting Chemotaxis Proteins/genetics , Methyl-Accepting Chemotaxis Proteins/metabolism , Models, Molecular , Phosphoric Monoester Hydrolases/genetics , Phosphoric Monoester Hydrolases/metabolism , Protein Domains , Serine/metabolism , Signal Transduction
3.
Proc Natl Acad Sci U S A ; 111(19): E2037-45, 2014 May 13.
Article in English | MEDLINE | ID: mdl-24782537

ABSTRACT

Two-component systems (TCSs) are highly conserved across bacteria and are used to rapidly sense and respond to changing environmental conditions. The human pathogen Staphylococcus aureus uses the S. aureus exoprotein expression (sae) TCS to sense host signals and activate transcription of virulence factors essential to pathogenesis. Despite its importance, the mechanism by which the histidine kinase SaeS recognizes specific host stimuli is unknown. After mutagenizing the predicted extracellular loop of SaeS, we discovered one methionine residue (M31) was essential for the ability of S. aureus to transcribe sae target genes, including hla, lukAB/lukGH, and hlgA. This single M31A mutation also significantly reduced cytotoxicity in human neutrophils to levels observed in cells following interaction with ΔsaeS. Another important discovery was that mutation of two aromatic anchor residues (W32A and F33A) disrupted the normal basal signaling of SaeS in the absence of inducing signals, yet both mutant kinases had appropriate activation of effector genes following exposure to neutrophils. Although the transcriptional profile of aromatic mutation W32A was consistent with that of WT in response to human α-defensin 1, mutant kinase F33A did not properly transcribe the γ-toxin genes in response to this stimulus. Taken together, our results provide molecular evidence for how SaeS recognizes host signals and triggers activation of select virulence factors to facilitate evasion of innate immunity. These findings have important implications for signal transduction in prokaryotes and eukaryotes due to conservation of aromatic anchor residues across both of these domains and the important role they play in sensor protein structure and function.


Subject(s)
Neutrophils/microbiology , Protein Kinases/genetics , Protein Kinases/immunology , Staphylococcus aureus/enzymology , Staphylococcus aureus/genetics , Amino Acid Sequence , Bacterial Proteins , Cell Membrane/metabolism , Enzyme Activation , Immunity, Innate/immunology , Molecular Sequence Data , Neutrophils/immunology , Protein Kinases/chemistry , Protein Structure, Tertiary , Signal Transduction/immunology , Staphylococcus aureus/pathogenicity , Virulence
4.
bioRxiv ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39091725

ABSTRACT

The experimental challenges posed by integral membrane proteins hinder molecular understanding of transmembrane signaling mechanisms. Here, we exploited protein crosslinking assays in living cells to follow conformational and dynamic stimulus signals in Tsr, the Escherichia coli serine chemoreceptor. Tsr mediates serine chemotaxis by integrating transmembrane serine-binding inputs with adaptational modifications of a methylation helix bundle to regulate a signaling kinase at the cytoplasmic tip of the receptor molecule. We created a series of cysteine replacements at Tsr residues adjacent to hydrophobic packing faces of the bundle helices and crosslinked them with a cell-permeable, bifunctional thiol-reagent. We identified an extensively crosslinked dynamic junction midway through the methylation helix bundle that seemed uniquely poised to respond to serine signals. We explored its role in mediating signaling shifts between different packing arrangements of the bundle helices by measuring crosslinking in receptor molecules with apposed pairs of cysteine reporters in each subunit and assessing their signaling behaviors with an in vivo kinase assay. In the absence of serine, the bundle helices evinced compact kinase-ON packing arrangements; in the presence of serine, the dynamic junction destabilized adjacent bundle segments and shifted the bundle to an expanded, less stable kinase-OFF helix-packing arrangement. An AlphaFold 3 model of kinase-active Tsr showed a prominent bulge and kink at the dynamic junction that might antagonize stable structure at the receptor tip. Serine stimuli probably inhibit kinase activity by shifting the bundle to a less stably-packed conformation that relaxes structural strain at the receptor tip, thereby freezing kinase activity.

5.
Infect Immun ; 81(4): 1316-24, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23381999

ABSTRACT

Several prominent bacterial pathogens secrete nuclease (Nuc) enzymes that have an important role in combating the host immune response. Early studies of Staphylococcus aureus Nuc attributed its regulation to the agr quorum-sensing system. However, recent microarray data have indicated that nuc is under the control of the SaeRS two-component system, which is a major regulator of S. aureus virulence determinants. Here we report that the nuc gene is directly controlled by the SaeRS two-component system through reporter fusion, immunoblotting, Nuc activity measurements, promoter mapping, and binding studies, and additionally, we were unable identify a notable regulatory link to the agr system. The observed SaeRS-dependent regulation was conserved across a wide spectrum of representative S. aureus isolates. Moreover, with community-associated methicillin-resistant S. aureus (CA MRSA) in a mouse model of peritonitis, we observed in vivo expression of Nuc activity in an SaeRS-dependent manner and determined that Nuc is a virulence factor that is important for in vivo survival, confirming the enzyme's role as a contributor to invasive disease. Finally, natural polymorphisms were identified in the SaeRS proteins, one of which was linked to Nuc regulation in a CA MRSA USA300 endocarditis isolate. Altogether, our findings demonstrate that Nuc is an important S. aureus virulence factor and part of the SaeRS regulon.


Subject(s)
Bacterial Proteins/metabolism , Gene Expression Regulation, Bacterial , Micrococcal Nuclease/biosynthesis , Protein Kinases/metabolism , Staphylococcus aureus/pathogenicity , Virulence Factors/biosynthesis , Animals , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred BALB C , Microbial Viability , Peritonitis/microbiology , Peritonitis/pathology , Regulon , Staphylococcus aureus/genetics , Transcription Factors
6.
J Biol Chem ; 286(19): 17351-8, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21454495

ABSTRACT

In the postantibiotic era, available treatment options for severe bacterial infections caused by methicillin-resistant Staphylococcus aureus have become limited. Therefore, new and innovative approaches are needed to combat such life-threatening infections. Virulence factor expression in S. aureus is regulated in a cell density-dependent manner using "quorum sensing," which involves generation and secretion of autoinducing peptides (AIPs) into the surrounding environment to activate a bacterial sensor kinase at a particular threshold concentration. Mouse monoclonal antibody AP4-24H11 was shown previously to blunt quorum sensing-mediated changes in gene expression in vitro and protect mice from a lethal dose of S. aureus by sequestering the AIP signal. We have elucidated the crystal structure of the AP4-24H11 Fab in complex with AIP-4 at 2.5 Å resolution to determine its mechanism of ligand recognition. A key Glu(H95) provides much of the binding specificity through formation of hydrogen bonds with each of the four amide nitrogens in the AIP-4 macrocyclic ring. Importantly, these structural data give clues as to the interactions between the cognate staphylococcal AIP receptors AgrC and the AIPs, as AP4-24H11·AIP-4 binding recapitulates features that have been proposed for AgrC-AIP recognition. Additionally, these structural insights may enable the engineering of AIP cross-reactive antibodies or quorum quenching vaccines for use in active or passive immunotherapy for prevention or treatment of S. aureus infections.


Subject(s)
Ligands , Quorum Sensing/genetics , Staphylococcus aureus/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Crystallography, X-Ray/methods , Gene Expression Regulation, Bacterial , Immunoglobulin Fragments/chemistry , Immunoglobulin G/chemistry , Luminescent Proteins/metabolism , Models, Molecular , Peptides/chemistry , Protein Binding , Protein Interaction Mapping , Quorum Sensing/immunology , Signal Transduction
7.
Front Microbiol ; 11: 561, 2020.
Article in English | MEDLINE | ID: mdl-32390958

ABSTRACT

Staphylococcus aureus (S. aureus) causes a range of diseases ranging from superficial skin and soft-tissue infections to invasive and life-threatening conditions (Klevens et al., 2007; Kobayashi et al., 2015). S. aureus utilizes the Sae sensory system to adapt to neutrophil challenge. Although the roles of the SaeR response regulator and its cognate sensor kinase SaeS have been demonstrated to be critical for surviving neutrophil interaction and for causing infection, the roles for the accessory proteins SaeP and SaeQ remain incompletely defined. To characterize the functional role of these proteins during innate immune interaction, we generated isogenic deletion mutants lacking these accessory genes in USA300 (USA300ΔsaeP and USA300ΔsaeQ). S. aureus survival was increased following phagocytosis of USA300ΔsaeP compared to USA300 by neutrophils. Additionally, secreted extracellular proteins produced by USA300ΔsaeP cells caused significantly more plasma membrane damage to human neutrophils than extracellular proteins produced by USA300 cells. Deletion of saeQ resulted in a similar phenotype, but effects did not reach significance during neutrophil interaction. The enhanced cytotoxicity of USA300ΔsaeP cells toward human neutrophils correlated with an increased expression of bi-component leukocidins known to target these immune cells. A saeP and saeQ double mutant (USA300ΔsaePQ) showed a significant increase in survival following neutrophil phagocytosis that was comparable to the USA300ΔsaeP single mutant and increased the virulence of USA300 during murine bacteremia. These data provide evidence that SaeP modulates the Sae-mediated response of S. aureus against human neutrophils and suggest that saeP and saeQ together impact pathogenesis in vivo.

8.
mBio ; 10(3)2019 06 25.
Article in English | MEDLINE | ID: mdl-31239382

ABSTRACT

We developed a new approach that couples Southwestern blotting and mass spectrometry to discover proteins that bind extracellular DNA (eDNA) in bacterial biofilms. Using Staphylococcus aureus as a model pathogen, we identified proteins with known DNA-binding activity and uncovered a series of lipoproteins with previously unrecognized DNA-binding activity. We demonstrated that expression of these lipoproteins results in an eDNA-dependent biofilm enhancement. Additionally, we found that while deletion of lipoproteins had a minimal impact on biofilm accumulation, these lipoprotein mutations increased biofilm porosity, suggesting that lipoproteins and their associated interactions contribute to biofilm structure. For one of the lipoproteins, SaeP, we showed that the biofilm phenotype requires the lipoprotein to be anchored to the outside of the cellular membrane, and we further showed that increased SaeP expression correlates with more retention of high-molecular-weight DNA on the bacterial cell surface. SaeP is a known auxiliary protein of the SaeRS system, and we also demonstrated that the levels of SaeP correlate with nuclease production, which can further impact biofilm development. It has been reported that S. aureus biofilms are stabilized by positively charged cytoplasmic proteins that are released into the extracellular environment, where they make favorable electrostatic interactions with the negatively charged cell surface and eDNA. In this work we extend this electrostatic net model to include secreted eDNA-binding proteins and membrane-attached lipoproteins that can function as anchor points between eDNA in the biofilm matrix and the bacterial cell surface.IMPORTANCE Many bacteria are capable of forming biofilms encased in a matrix of self-produced extracellular polymeric substances (EPS) that protects them from chemotherapies and the host defenses. As a result of these inherent resistance mechanisms, bacterial biofilms are extremely difficult to eradicate and are associated with chronic wounds, orthopedic and surgical wound infections, and invasive infections, such as infective endocarditis and osteomyelitis. It is therefore important to understand the nature of the interactions between the bacterial cell surface and EPS that stabilize biofilms. Extracellular DNA (eDNA) has been recognized as an EPS constituent for many bacterial species and has been shown to be important in promoting biofilm formation. Using Staphylococcus aureus biofilms, we show that membrane-attached lipoproteins can interact with the eDNA in the biofilm matrix and promote biofilm formation, which suggests that lipoproteins are potential targets for novel therapies aimed at disrupting bacterial biofilms.


Subject(s)
Bacterial Proteins/metabolism , Biofilms , DNA-Binding Proteins/metabolism , Lipoproteins/metabolism , Staphylococcus aureus/genetics , Bacterial Proteins/genetics , Blotting, Southwestern , DNA, Bacterial/genetics , DNA-Binding Proteins/genetics , Extracellular Polymeric Substance Matrix/genetics , Lipoproteins/genetics , Mass Spectrometry , Staphylococcus aureus/physiology , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL