Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Handb Exp Pharmacol ; 269: 251-277, 2021.
Article in English | MEDLINE | ID: mdl-34455486

ABSTRACT

Frizzled7 activates ß-catenin-dependent and ß-catenin-independent Wnt signalling pathways, is highly conserved through evolution from the ancient phylum hydra to man, plays essential roles in stem cells, tissue homeostasis and regeneration in the adult, and is upregulated in diverse cancers. Much of what is known about the core components of the Wnt signalling pathways was derived from studying the function of Frizzled7 orthologues in the development of lower organism. As we interrogate Frizzled7 signalling and function for therapeutic targeting in cancer, it is timely to revisit lower organisms to gain insight into the context dependent and dynamic nature of Wnt signalling for effective drug design.


Subject(s)
Colorectal Neoplasms , Frizzled Receptors , Morphogenesis , Wnt Signaling Pathway , beta Catenin , Animals , Colorectal Neoplasms/drug therapy , Humans , beta Catenin/metabolism
2.
Cell Rep ; 32(3): 107937, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32698002

ABSTRACT

Calorie restriction (CR) extends lifespan through several intracellular mechanisms, including increased DNA repair, leading to fewer DNA mutations that cause age-related pathologies. However, it remains unknown how CR acts on mutation retention at the tissue level. Here, we use Cre-mediated DNA recombination of the confetti reporter as proxy for neutral mutations and follow these mutations by intravital microscopy to identify how CR affects retention of mutations in the intestine. We find that CR leads to increased numbers of functional Lgr5+ stem cells that compete for niche occupancy, resulting in slower but stronger stem cell competition. Consequently, stem cells carrying neutral or Apc mutations encounter more wild-type competitors, thus increasing the chance that they get displaced from the niche to get lost over time. Thus, our data show that CR not only affects the acquisition of mutations but also leads to lower retention of mutations in the intestine.


Subject(s)
Caloric Restriction , Cell Competition , Intestines/cytology , Mutation/genetics , Stem Cells/cytology , Adenomatous Polyposis Coli Protein/deficiency , Adenomatous Polyposis Coli Protein/metabolism , Animals , Cell Count , Cell Lineage , Female , Intravital Microscopy , Male , Mice, Inbred C57BL
3.
Cancers (Basel) ; 12(6)2020 May 31.
Article in English | MEDLINE | ID: mdl-32486480

ABSTRACT

An emerging theme for Wnt-addicted cancers is that the pathway is regulated at multiple steps via various mechanisms. Infection with hepatitis B virus (HBV) is a major risk factor for liver cancer, as is deregulated Wnt signaling, however, the interaction between these two causes is poorly understood. To investigate this interaction, we screened the effect of the various HBV proteins for their effect on Wnt/ß-catenin signaling and identified the pre-core protein p22 as a novel and potent activator of TCF/ß-catenin transcription. The effect of p22 on TCF/ß-catenin transcription was dose dependent and inhibited by dominant-negative TCF4. HBV p22 activated synthetic and native Wnt target gene promoter reporters, and TCF/ß-catenin target gene expression in vivo. Importantly, HBV p22 activated Wnt signaling on its own and in addition to Wnt or ß-catenin induced Wnt signaling. Furthermore, HBV p22 elevated TCF/ß-catenin transcription above constitutive activation in colon cancer cells due to mutations in downstream genes of the Wnt pathway, namely APC and CTNNB1. Collectively, our data identifies a previously unappreciated role for the HBV pre-core protein p22 in elevating Wnt signaling. Understanding the molecular mechanisms of p22 activity will provide insight into how Wnt signaling is fine-tuned in cancer.

SELECTION OF CITATIONS
SEARCH DETAIL