Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Curr Treat Options Oncol ; 19(2): 13, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29516254

ABSTRACT

OPINION STATEMENT: Synovial sarcoma (SS) is a rare, yet highly malignant, type of soft tissue sarcoma (STS), for which survival has not improved significantly during the past years. In this review, we focus on systemic treatment in adults. Compared to other STS, SS are relatively chemosensitive. Ifosfamide and ifosfamide combinations are active in different lines of treatment. In high-risk extremity and chest wall STS, neoadjuvant doxorubicin and ifosfamide has shown as much activity as high-dose ifosfamide. There are indications that combination chemotherapy with doxorubicin and ifosfamide in this setting improves outcome. In the first-line metastatic setting, combination treatment with doxorubicin and ifosfamide is a preferred option in fit patients, while in other patients, sequential doxorubicin and ifosfamide can be considered. In second and later lines, pazopanib and trabectedin have shown activity. Many new approaches to treat metastatic SS are currently under investigation, both preclinical as well as clinical, including other receptor tyrosine kinase inhibitors, epigenetic modulators, compounds interfering with DNA damage response (DDR), and immunotherapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Doxorubicin/therapeutic use , Ifosfamide/therapeutic use , Sarcoma, Synovial/drug therapy , Adult , Humans , Indazoles , Pyrimidines/therapeutic use , Sarcoma, Synovial/pathology , Sulfonamides/therapeutic use , Trabectedin/therapeutic use
2.
Ann Surg Oncol ; 23(9): 2745-52, 2016 09.
Article in English | MEDLINE | ID: mdl-27334220

ABSTRACT

BACKGROUND: In synovial sarcomas alterations in the cyclin D1-CDK4/6-Rb axis have been described. Also, ß-catenin, a cyclin D1 regulator, is often overexpressed. Additionally, studies have shown that the t(X;18) translocation influences tumor behavior partly through cyclin D1 activation. We investigated how alterations in the cyclin D1-CDK4/6-Rb axis impact prognosis and studied effects of targeting this axis with the CDK4/6 inhibitor palbociclib. METHODS: Synovial sarcoma samples (n = 43) were immunohistochemically stained for ß-catenin, cyclin D1, p16, p21, p27, Rb, and phospho-Rb. Fluorescent in situ hybridization (FISH) was performed to detect CCND1 amplification or translocation. In 4 synovial sarcoma cell lines sensitivity to palbociclib was investigated using cell viability assays, and effects on the sensitive cell lines were evaluated on protein level and by cell cycle arrest. RESULTS: Expression of nuclear phospho-Rb and nuclear ß-catenin in the patient samples was associated with poor survival. FISH showed a sporadic translocation of CCND1 in a subset of tumors. An 8-fold CCND1 amplification was found in 1 cell line, but not in the patient samples investigated. Palbociclib effectively inhibited Rb-phosphorylation in 3 cell lines, resulting in an induction of a G1 arrest and proliferation block. CONCLUSIONS: In this series nuclear phospho-Rb and nuclear ß-catenin expression were negative prognostic factors. In vitro data suggest that palbociclib may be a potential treatment for a subset of synovial sarcoma patients. Whether this effect can be enhanced by combination treatment deserves further preclinical investigations.


Subject(s)
Antineoplastic Agents/therapeutic use , Piperazines/therapeutic use , Pyridines/therapeutic use , Sarcoma, Synovial/drug therapy , Sarcoma, Synovial/metabolism , Adolescent , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin D1/genetics , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Female , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Immunohistochemistry , Male , Phosphorylation/drug effects , Piperazines/pharmacology , Pyridines/pharmacology , Retinoblastoma Protein/metabolism , Sarcoma, Synovial/genetics , Survival Rate , Young Adult , beta Catenin/metabolism
3.
Biochim Biophys Acta ; 1845(2): 266-76, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24582852

ABSTRACT

Osteosarcoma (OS) and Ewing sarcoma (ES) are the two most common types of primary bone cancer, which mainly affect children and young adults. Despite intensive multi-modal treatment, the survival of both OS and ES has not improved much during the last decades and new therapeutic options are awaited. One promising approach is the specific targeting of transmembrane receptor tyrosine kinases (RTKs) implicated in these types of bone cancer. However, despite encouraging in vitro and in vivo results, apart from intriguing results of Insulin-like Growth Factor-1 Receptor (IGF-1R) antibodies in ES, clinical studies are limited or disappointing. Primary resistance to RTK inhibitors is frequently observed in OS and ES patients, and even patients that initially respond well eventually develop acquired resistance. There are, however, a few remarks to make concerning the current set-up of clinical trials and about strategies to improve RTK-based treatments in OS and ES. This review provides an overview concerning current RTK-mediated therapies in OS and ES and discusses the problems observed in the clinic. More importantly, we describe several strategies to overcome resistance to RTK inhibitors which may significantly improve outcome of OS and ES patients.


Subject(s)
Osteosarcoma/drug therapy , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases/genetics , Sarcoma, Ewing/drug therapy , Clinical Trials as Topic , Drug Resistance, Neoplasm/genetics , Humans , Molecular Targeted Therapy , Osteosarcoma/genetics , Osteosarcoma/immunology , Osteosarcoma/pathology , Protein Kinase Inhibitors/metabolism , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/immunology , Receptor, IGF Type 1/immunology , Receptor, IGF Type 1/therapeutic use , Sarcoma, Ewing/genetics , Sarcoma, Ewing/immunology , Sarcoma, Ewing/pathology
4.
Int J Cancer ; 135(12): 2770-82, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-24771207

ABSTRACT

Mammalian target of rapamycin (mTOR) is a new promising oncological target. However, most clinical studies reported only modest antitumor activity during mTOR-targeted monotherapies, including studies in osteosarcomas, emphasizing a need for improvement. We hypothesized that the combination with rationally selected other therapeutic agents may improve response. In this study, we examined the efficacy of the mTOR inhibitor temsirolimus combined with cisplatin or bevacizumab on the growth of human osteosarcoma xenografts (OS-33 and OS-1) in vivo, incorporating functional imaging techniques and microscopic analyses to unravel mechanisms of response. In both OS-33 and OS-1 models, the activity of temsirolimus was significantly enhanced by the addition of cisplatin (TC) or bevacizumab (TB). Extensive immunohistochemical analysis demonstrated apparent effects on tumor architecture, vasculature, apoptosis and the mTOR-pathway with combined treatments. 3'-Deoxy-3'-(18) F-fluorothymidine ((18) F-FLT) positron emission tomography (PET) scans showed a remarkable decrease in (18) F-FLT signal in TC- and TB-treated OS-1 tumors, which was already noticeable after 1 week of treatment. No baseline uptake was observed in the OS-33 model. Both immunohistochemistry and (18) F-FLT-PET demonstrated that responses as determined by caliper measurements underestimated the actual tumor response. Although (18) F-FLT-PET could be used for accurate and early response monitoring for temsirolimus-based therapies in the OS-1 model, we could not evaluate OS-33 tumors with this molecular imaging technique. Further research on the value of the use of (18) F-FLT-PET in this setting in osteosarcomas is warranted. Overall, these findings urge the further exploration of TC and TB treatment for osteosarcoma (and other cancer) patients.


Subject(s)
Antibodies, Monoclonal, Humanized/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bone Neoplasms/drug therapy , Cisplatin/administration & dosage , Osteosarcoma/drug therapy , Sirolimus/analogs & derivatives , Angiogenesis Inhibitors/administration & dosage , Animals , Bevacizumab , Cell Line, Tumor , Dideoxynucleosides , Female , Fluorodeoxyglucose F18 , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Positron-Emission Tomography , Protein Kinase Inhibitors/administration & dosage , Sirolimus/administration & dosage , TOR Serine-Threonine Kinases/metabolism , Tomography, X-Ray Computed , Xenograft Model Antitumor Assays
5.
Nat Med ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844796

ABSTRACT

Recent research showed that precision medicine can identify new treatment strategies for patients with childhood cancers. However, it is unclear which patients will benefit most from precision-guided treatment (PGT). Here we report consecutive data from 384 patients with high-risk pediatric cancer (with an expected cure rate of less than 30%) who had at least 18 months of follow-up on the ZERO Childhood Cancer Precision Medicine Program PRecISion Medicine for Children with Cancer (PRISM) trial. A total of 256 (67%) patients received PGT recommendations and 110 (29%) received a recommended treatment. PGT resulted in a 36% objective response rate and improved 2-year progression-free survival compared with standard of care (26% versus 12%; P = 0.049) or targeted agents not guided by molecular findings (26% versus 5.2%; P = 0.003). PGT based on tier 1 evidence, PGT targeting fusions or commenced before disease progression had the greatest clinical benefit. Our data show that PGT informed by comprehensive molecular profiling significantly improves outcomes for children with high-risk cancers. ClinicalTrials.gov registration: NCT03336931.

6.
Int J Cancer ; 133(2): 427-36, 2013 Jul 15.
Article in English | MEDLINE | ID: mdl-23335077

ABSTRACT

Because novel therapeutic options are limited in Ewing sarcomas (ES), we investigated the expression, genetic aberrations and clinical relevance of MET and anaplastic lymphoma kinase (ALK) in ES and determined the relevance of targeting these receptors. MET and ALK protein expression was determined immunohistochemically in 31 (50 samples) and 36 (59 samples) ES patients, respectively. Samples included primary tumors, postchemotherapy resections, metastases and relapses. MET and ALK RTK domains were sequenced in respectively 33 and 32 tumors. Five ES cell lines were treated in vitro with the MET/ALK-inhibitor crizotinib, the ALK-inhibitor NVP-TAE684 or the MET-inhibitor cabozantinib and analyzed by MTT assays. Modest to high MET and ALK expression was detected in the majority of ES (86 and 69%, respectively). ALK expression was significantly lower in postchemotherapy resections compared to paired untreated primary tumors (p = 0.031, z = -2.310, n = 11). In primary tumors (n = 20), membranous MET expression significantly correlated with a poor overall survival (OS) (60 vs. 197 months, p = 0.014). There was a trend toward a poor event-free survival (67 vs. 111 months, p = 0.078) and OS (88 vs. 128 months, p = 0.074) in patients with highest ALK levels (n = 29). ALK or MET RTK domain aberrations were demonstrated in 5/32 (16%) and 3/33 (9%) tumors, respectively. Crizotinib (IC50 1.22-3.59 µmol/L), NVP-TAE684 (IC50 0.15-0.79 µmol/L) and cabozantinib (IC50 2.69-8.27 µmol/L) affected ES cell viability in vitro. Altogether, our data suggest that MET and ALK are potential novel therapeutic targets in ES and targeting these receptors may be of great interest to rationally design future studies in ES.


Subject(s)
Gene Expression Regulation, Neoplastic , Proto-Oncogene Proteins c-met/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Sarcoma, Ewing/metabolism , Adolescent , Adult , Anaplastic Lymphoma Kinase , Anilides/pharmacology , Child , Child, Preschool , Chromosome Aberrations , Crizotinib , Female , Gene Expression Profiling , Humans , Immunohistochemistry , Inhibitory Concentration 50 , Male , Middle Aged , Neoplasm Metastasis , Pyrazoles/pharmacology , Pyridines/pharmacology , Pyrimidines/pharmacology , Recurrence , Tetrazolium Salts/pharmacology , Thiazoles/pharmacology , Treatment Outcome , Young Adult
7.
Oncogene ; 42(23): 1875-1888, 2023 06.
Article in English | MEDLINE | ID: mdl-37130917

ABSTRACT

Rare but recurrent mutations in the fibroblast growth factor receptor (FGFR) pathways, most commonly in one of the four FGFR receptor tyrosine kinase genes, can potentially be targeted with broad-spectrum multi-kinase or FGFR selective inhibitors. The complete spectrum of these mutations in paediatric cancers is emerging as precision medicine programs perform comprehensive sequencing of individual tumours. Identification of patients most likely to benefit from FGFR inhibition currently rests on identifying activating FGFR mutations, gene fusions, or gene amplification events. However, the expanding use of transcriptome sequencing (RNAseq) has identified that many tumours overexpress FGFRs, in the absence of any genomic aberration. The challenge now presented is to determine when this indicates true FGFR oncogenic activity. Under-appreciated mechanisms of FGFR pathway activation, including alternate FGFR transcript expression and concomitant FGFR and FGF ligand expression, may mark those tumours where FGFR overexpression is indicative of a dependence on FGFR signalling. In this review, we provide a comprehensive and mechanistic overview of FGFR pathway aberrations and their functional consequences in paediatric cancer. We explore how FGFR over expression might be associated with true receptor activation. Further, we discuss the therapeutic implications of these aberrations in the paediatric setting and outline current and emerging therapeutic strategies to treat paediatric patients with FGFR-driven cancers.


Subject(s)
Neoplasms , Receptors, Fibroblast Growth Factor , Humans , Young Adult , Child , Neoplasms/genetics , Neoplasms/drug therapy , Signal Transduction/genetics , Mutation , Phosphorylation , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism
8.
Front Oncol ; 13: 1013359, 2023.
Article in English | MEDLINE | ID: mdl-36994209

ABSTRACT

Osteosarcoma (OS) and Ewing sarcoma (ES) are the two most common types of primary bone cancer that predominantly affect the young. Despite aggressive multimodal treatment, survival has not improved significantly over the past four decades. Clinical efficacy has historically been observed for some mono-Receptor Tyrosine Kinase (RTK) inhibitors, albeit in small subsets of OS and ES patients. Clinical efficacy in larger groups of OS or ES patients was reported recently with several newer generation multi-RTK inhibitors. All these inhibitors combine a strong anti-angiogenic (VEGFRs) component with simultaneous inhibition of other key RTKs implicated in OS and ES progression (PDGFR, FGFR, KIT and/or MET). However, despite interesting clinical data, none of these agents have obtained a registration for these indications and are thus difficult to implement in routine OS and ES patient care. It is at present also unclear which of these drugs, with largely overlapping molecular inhibition profiles, would work best for which patient or subtype, and treatment resistance almost uniformly occurs. Here, we provide a critical assessment and systemic comparison on the clinical outcomes to the six most tested drugs in this field in OS and ES to date, including pazopanib, sorafenib, regorafenib, anlotinib, lenvatinib and cabozantinib. We pay special attention to clinical response evaluations in bone sarcomas and provide drug comparisons, including drug-related toxicity, to put these drugs into context for OS and ES patients, and describe how future trials utilizing anti-angiogenic multi-RTK targeted drugs could be designed to ultimately improve response rates and decrease toxicity.

9.
Sarcoma ; 2022: 3089424, 2022.
Article in English | MEDLINE | ID: mdl-35655525

ABSTRACT

Desmoplastic small round cell tumors (DSRCTs), Ewing sarcoma (ES), and alveolar and embryonal rhabdomyosarcoma (ARMS and ERMS) are malignant sarcomas typically occurring at young age, with a poor prognosis in the metastatic setting. New treatment options are necessary. Src family kinase inhibitor dasatinib single-agent treatment has been investigated in a phase 2 study in patients with advanced sarcomas including ES and RMS but failed as a single agent in these subtypes. Since previous studies demonstrated high FAK and Src activities in RMS and ES tissue and cell lines, and dasatinib treatment was shown to upregulate activated FAK, we hypothesized that FAK-Src combination treatment could potentially be an interesting treatment option for these tumor types. We examined the effects of targeting the FAK-Src complex by addressing (p)FAK and (p)Src expressions in tumor sections of DSRCT (n = 13), ES (n = 68), ARMS (n = 21), and ERMS (n = 39) and by determining the antitumor effects of single and combined treatment with FAK inhibitor defactinib and multikinase (Abl/SFK) inhibitor dasatinib in vitro on cell lines of each subtype. In vivo effects were assessed in DSRCT and ERMS models. Concurrent pFAK and pSrc expressions (H-score >50) were observed in DSRCT (67%), ES (6%), ARMS (35%), and ERMS (19%) samples. Defactinib treatment decreased pFAK expression and reduced cell viability in all subtypes. Dasatinib treatment decreased pSrc expression and cell viability in each subtype. Combination treatment led to a complete reduction in pFAK and pSrc in each cell line and showed enhanced cell viability reduction, drug synergy, DNA damage induction, and a trend toward higher apoptosis induction in DSRCT, ERMS, and ARMS but not in ES cells. These promising in vitro results unfortunately do not translate into promising in vivo results as we did not observe a significant effect on tumor volume in vivo, and the combination did not show superior effects compared to dasatinib single-agent treatment.

10.
Biochim Biophys Acta Rev Cancer ; 1876(2): 188613, 2021 12.
Article in English | MEDLINE | ID: mdl-34390800

ABSTRACT

Rapid advances in genomic technologies have enabled in-depth interrogation of cancer genomes, revealing novel and unexpected therapeutic targets in many cancer types. Identifying actionable dependencies in the diverse and heterogeneous group of sarcomas, particularly those that occur in children or adolescents and young adults (AYAs), remains especially challenging. These patients rarely harbor actionable genomic aberrations, no targeted agent is approved, and outcomes have remained poor for the past decades. This underlines a clear need to refine our methods for target identification. Phosphoproteomics studies in sarcoma showed the power of such analyses to capture novel actionable drivers that are not accompanied by mutational events or gene amplifications. This Review makes the case that incorporating phosphoproteomic molecular profiling alongside (functional) genomics technologies can significantly expand therapeutic target identification, and pinpoint drug mechanisms of action, in pediatric and AYA sarcoma patients. We explore the utility and prospects of phosphoproteomics in personalized medicine.


Subject(s)
Precision Medicine/methods , Proteomics/methods , Sarcoma/therapy , Female , Humans , Male , Sarcoma/pathology
11.
Biomedicines ; 9(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34944614

ABSTRACT

Despite aggressive surgery, chemotherapy, and radiotherapy, survival of children and adolescents and young adults (AYAs) with sarcoma has not improved significantly in the past four decades. Immune checkpoint inhibitors (ICIs) are an exciting type of immunotherapy that offer new opportunities for the treatment of paediatric and AYA sarcomas. However, to date, most children do not derive a benefit from this type of treatment as a monotherapy. The immunosuppressive tumour microenvironment is a major barrier limiting their efficacy. Combinations of ICIs, such as anti-PD-1 therapy, with targeted molecular therapies that have immunomodulatory properties may be the key to breaking through immunosuppressive barriers and improving patient outcomes. Preclinical studies have indicated that several receptor tyrosine kinase inhibitors (RTKi) can alter the tumour microenvironment and boost the efficacy of anti-PD-1 therapy. A number of these combinations have entered phase-1/2 clinical trials, mostly in adults, and in most instances have shown efficacy with manageable side-effects. In this review, we discuss the status of ICI therapy in paediatric and AYA sarcomas and the rationale for co-treatment with RTKis. We highlight new opportunities for the integration of ICI therapy with RTK inhibitors, to improve outcomes for children with sarcoma.

12.
Cancers (Basel) ; 13(18)2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34572932

ABSTRACT

Sarcomas are a diverse group of bone and soft tissue tumors that account for over 10% of childhood cancers. Outcomes are particularly poor for children with refractory, relapsed, or metastatic disease. Chimeric antigen receptor T (CAR T) cells are an exciting form of adoptive cell therapy that potentially offers new hope for these children. In early trials, promising outcomes have been achieved in some pediatric patients with sarcoma. However, many children do not derive benefit despite significant expression of the targeted tumor antigen. The success of CAR T cell therapy in sarcomas and other solid tumors is limited by the immunosuppressive tumor microenvironment (TME). In this review, we provide an update of the CAR T cell therapies that are currently being tested in pediatric sarcoma clinical trials, including those targeting tumors that express HER2, NY-ESO, GD2, EGFR, GPC3, B7-H3, and MAGE-A4. We also outline promising new CAR T cells that are in pre-clinical development. Finally, we discuss strategies that are being used to overcome tumor-mediated immunosuppression in solid tumors; these strategies have the potential to improve clinical outcomes of CAR T cell therapy for children with sarcoma.

13.
Int J Cancer ; 127(6): 1486-92, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20087860

ABSTRACT

Gab2, a docking-type signaling protein with demonstrated oncogenic potential, is overexpressed in breast cancer, but its prognostic significance and role in disease evolution remain unclear. Immunohistochemical detection of Gab2 in a large cohort of primary human breast cancers of known outcome revealed that while Gab2 expression was positively correlated with increased tumor grade, it did not correlate with disease recurrence or breast cancer-related death in the total cohort or in patients stratified according to lymph node, estrogen receptor (ER) or HER2 status. Interestingly, analysis of a "progression series" that included premalignant and preinvasive breast lesions as well as samples of metastatic disease revealed that Gab2 expression was significantly enhanced in the earliest lesion examined, usual ductal hyperplasia, with a further increase detected in ductal carcinoma in situ (DCIS). Furthermore, expression was less in invasive cancers and lymph node metastases than in DCIS, but still higher than in normal breast. These findings indicate that while Gab2 expression is not prognostic in breast cancer, its role in early disease evolution warrants further analysis, as Gab2 and its effectors may provide targets for novel strategies aimed at preventing breast cancer development.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cohort Studies , Female , Genes, erbB-2 , Humans , Receptors, Estrogen/metabolism
14.
J Cancer Res Clin Oncol ; 146(7): 1659-1670, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32279088

ABSTRACT

PURPOSE: Desmoplastic small round cell tumors (DSRCTs) are highly malignant and very rare soft tissue sarcomas with a high unmet need for new therapeutic options. Therefore, we examined poly(ADP-ribose) polymerase 1 (PARP1) and Schlafen-11 (SLFN11) expression in DSRCT tumor tissue and the combination of PARP inhibitor olaparib with the alkylating agent temozolomide (TMZ) in a preclinical DSRCT model. METHODS: PARP1 and SLFN11 have been described as predictive biomarkers for response to PARP inhibition. Expression of PARP1 and SLFN11 was assessed in 16 and 12 DSRCT tumor tissue samples, respectively. Effects of single-agent olaparib, and olaparib and TMZ combination treatment were examined using the preclinical JN-DSRCT-1 model. In vitro, single-agent and combination treatment effects on cell viability, the cell cycle, DNA damage and apoptosis were examined. Olaparib and TMZ combination treatment was also assessed in vivo. RESULTS: PARP1 and SLFN11 expression was observed in 100% and 92% of DSRCT tumor tissues, respectively. Olaparib treatment reduced cell viability and cell migration in a dose-dependent manner in vitro. Drug synergy between olaparib and TMZ was observed in vitro and in vivo. Combination treatment led to a cell-cycle arrest and induction of DNA damage and apoptosis, even when combined at low dosages. CONCLUSION: We show high PARP1 and SLFN11 expression in DSRCT tumor material and antitumor effects following olaparib and TMZ combination treatment in a preclinical DSRCT model. This suggests that olaparib and TMZ combination treatment could be a potential treatment option for DSRCTs.


Subject(s)
Antineoplastic Agents/pharmacology , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Temozolomide/pharmacology , Adolescent , Adult , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Child , Desmoplastic Small Round Cell Tumor/drug therapy , Desmoplastic Small Round Cell Tumor/etiology , Desmoplastic Small Round Cell Tumor/metabolism , Disease Models, Animal , Drug Synergism , Female , Gene Expression , Humans , Male , Mice , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Xenograft Model Antitumor Assays , Young Adult
15.
Nat Med ; 26(11): 1742-1753, 2020 11.
Article in English | MEDLINE | ID: mdl-33020650

ABSTRACT

The Zero Childhood Cancer Program is a precision medicine program to benefit children with poor-outcome, rare, relapsed or refractory cancer. Using tumor and germline whole genome sequencing (WGS) and RNA sequencing (RNAseq) across 252 tumors from high-risk pediatric patients with cancer, we identified 968 reportable molecular aberrations (39.9% in WGS and RNAseq, 35.1% in WGS only and 25.0% in RNAseq only). Of these patients, 93.7% had at least one germline or somatic aberration, 71.4% had therapeutic targets and 5.2% had a change in diagnosis. WGS identified pathogenic cancer-predisposing variants in 16.2% of patients. In 76 central nervous system tumors, methylome analysis confirmed diagnosis in 71.1% of patients and contributed to a change of diagnosis in two patients (2.6%). To date, 43 patients have received a recommended therapy, 38 of whom could be evaluated, with 31% showing objective evidence of clinical benefit. Comprehensive molecular profiling resolved the molecular basis of virtually all high-risk cancers, leading to clinical benefit in some patients.


Subject(s)
Epigenome/genetics , Neoplasm Proteins/genetics , Neoplasms/genetics , Transcriptome/genetics , Adolescent , Child , Child, Preschool , DNA Methylation/genetics , Female , Humans , Infant , Male , Mutation/genetics , Neoplasms/classification , Neoplasms/pathology , Pediatrics , Precision Medicine , Risk Factors , Exome Sequencing , Whole Genome Sequencing
16.
Mol Cancer Ther ; 17(7): 1365-1380, 2018 07.
Article in English | MEDLINE | ID: mdl-29967215

ABSTRACT

Targeted therapies have revolutionized cancer treatment; however, progress lags behind in alveolar (ARMS) and embryonal rhabdomyosarcoma (ERMS), a soft-tissue sarcoma mainly occurring at pediatric and young adult age. Insulin-like growth factor 1 receptor (IGF1R)-directed targeted therapy is one of the few single-agent treatments with clinical activity in these diseases. However, clinical effects only occur in a small subset of patients and are often of short duration due to treatment resistance. Rational selection of combination treatments of either multiple targeted therapies or targeted therapies with chemotherapy could hypothetically circumvent treatment resistance mechanisms and enhance clinical efficacy. Simultaneous targeting of distinct mechanisms might be of particular interest in this regard, as this affects multiple hallmarks of cancer at once. To determine the most promising and clinically relevant targeted therapy-based combination treatments for ARMS and ERMS, we provide an extensive overview of preclinical and (early) clinical data concerning a variety of targeted therapy-based combination treatments. We concentrated on the most common classes of targeted therapies investigated in rhabdomyosarcoma to date, including those directed against receptor tyrosine kinases and associated downstream signaling pathways, the Hedgehog signaling pathway, apoptosis pathway, DNA damage response, cell-cycle regulators, oncogenic fusion proteins, and epigenetic modifiers. Mol Cancer Ther; 17(7); 1365-80. ©2018 AACR.


Subject(s)
Molecular Targeted Therapy , Rhabdomyosarcoma/therapy , Animals , Biomarkers, Tumor , Clinical Trials as Topic , Combined Modality Therapy , Drug Evaluation, Preclinical , Gene Expression Regulation, Neoplastic/drug effects , Humans , Rhabdomyosarcoma/etiology , Rhabdomyosarcoma/metabolism , Signal Transduction/drug effects
17.
Sci Rep ; 8(1): 10614, 2018 Jul 13.
Article in English | MEDLINE | ID: mdl-30006631

ABSTRACT

Osteosarcoma (OS) is an aggressive sarcoma, where novel treatment approaches are required. Genomic studies suggest that a subset of OS, including OS tumour cell lines (TCLs), exhibit genomic loss of heterozygosity (LOH) patterns reminiscent of BRCA1 or BRCA2 mutant tumours. This raises the possibility that PARP inhibitors (PARPi), used to treat BRCA1/2 mutant cancers, could be used to target OS. Using high-throughput drug sensitivity screening we generated chemosensitivity profiles for 79 small molecule inhibitors, including three clinical PARPi. Drug screening was performed in 88 tumour cell lines, including 18 OS TCLs. This identified known sensitivity effects in OS TCLs, such as sensitivity to FGFR inhibitors. When compared to BRCA1/2 mutant TCLs, OS TCLs, with the exception of LM7, were PARPi resistant, including those with previously determined BRCAness LoH profiles. Post-screen validation experiments confirmed PARPi sensitivity in LM7 cells as well as a defect in the ability to form nuclear RAD51 foci in response to DNA damage. LM7 provides one OS model for the study of PARPi sensitivity through a potential defect in RAD51-mediated DNA repair. The drug sensitivity dataset we generated in 88 TCLs could also serve as a resource for the study of drug sensitivity effects in OS.


Subject(s)
BRCA1 Protein/genetics , BRCA2 Protein/genetics , Drug Resistance, Neoplasm/genetics , Osteosarcoma/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/genetics , Cell Nucleus/metabolism , DNA Damage/drug effects , DNA Damage/genetics , DNA Repair/drug effects , DNA Repair/genetics , Datasets as Topic , Drug Screening Assays, Antitumor/methods , High-Throughput Screening Assays/methods , Humans , Mutagenesis , Mutation , Osteosarcoma/genetics , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Rad51 Recombinase/metabolism
19.
Expert Opin Investig Drugs ; 26(12): 1341-1355, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28984489

ABSTRACT

INTRODUCTION: Defects in the DNA damage response (DDR) drive the development of cancer by fostering DNA mutation but also provide cancer-specific vulnerabilities that can be exploited therapeutically. The recent approval of three different PARP inhibitors for the treatment of ovarian cancer provides the impetus for further developing targeted inhibitors of many of the kinases involved in the DDR, including inhibitors of ATR, ATM, CHEK1, CHEK2, DNAPK and WEE1. Areas covered: We summarise the current stage of development of these novel DDR kinase inhibitors, and describe which predictive biomarkers might be exploited to direct their clinical use. Expert opinion: Novel DDR inhibitors present promising candidates in cancer treatment and have the potential to elicit synthetic lethal effects. In order to fully exploit their potential and maximize their utility, identifying highly penetrant predictive biomarkers of single agent and combinatorial DDR inhibitor sensitivity are critical. Identifying the optimal drug combination regimens that could used with DDR inhibitors is also a key objective.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Damage/drug effects , Neoplasms/drug therapy , Animals , Antineoplastic Agents/administration & dosage , Biomarkers/metabolism , Drug Design , Humans , Molecular Targeted Therapy , Mutation , Neoplasms/genetics , Neoplasms/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology
20.
Target Oncol ; 12(6): 815-826, 2017 12.
Article in English | MEDLINE | ID: mdl-29067644

ABSTRACT

BACKGROUND: The receptor tyrosine kinase (RTK) anaplastic lymphoma kinase (ALK) has been implicated in the tumorigenesis of rhabdomyosarcoma (RMS). However, the exact role of ALK in RMS is debatable and remains to be elucidated. OBJECTIVE: To determine the in vitro and in vivo effects and mechanism of action of the second-generation ALK inhibitor ceritinib on RMS cell growth. METHODS: Effects of ceritinib on cell proliferation, wound healing, cell cycle, and RTK signaling were determined in alveolar and embryonal rhabdomyosarcoma (ARMS, ERMS). In addition, possible synergistic effects of combined treatment with ceritinib and the Abl/Src family kinase inhibitor dasatinib were determined. RESULTS: Ceritinib treatment led to decreased cell proliferation, cell cycle arrest, apoptosis, and decreased in vivo tumor growth for the ARMS subtype. ERMS cell lines were less affected and showed no cell cycle arrest or apoptosis. Both subtypes lacked intrinsic ALK phosphorylation, and ceritinib was shown to affect the IGF1R signaling pathway. High levels of phosphorylated Src (Tyr416) were present following ceritinib treatment, making combined treatment with a Src inhibitor a potential treatment option. Combined treatment of ceritinib and dasatinib showed synergistic effects in both ERMS and ARMS cell lines. CONCLUSION: This study shows that monotherapy with an ALK inhibitor, such as ceritinib, in RMS, has no effect on ALK signaling. However, the synergistic effects of ceritinib and dasatinib are promising, most probably due to targeting of IGF1R and Src.


Subject(s)
Pyrimidines/therapeutic use , Receptor Protein-Tyrosine Kinases/metabolism , Rhabdomyosarcoma/drug therapy , Sulfones/therapeutic use , Anaplastic Lymphoma Kinase , Animals , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Pyrimidines/pharmacology , Rhabdomyosarcoma/complications , Rhabdomyosarcoma/pathology , Sulfones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL