Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 85
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Genome Res ; 33(1): 154-167, 2023 01.
Article in English | MEDLINE | ID: mdl-36617680

ABSTRACT

Genetic balancers in Caenorhabditis elegans are complex variants that allow lethal or sterile mutations to be stably maintained in a heterozygous state by suppressing crossover events. Balancers constitute an invaluable tool in the C. elegans scientific community and have been widely used for decades. The first/traditional balancers were created by applying X-rays, UV, or gamma radiation on C. elegans strains, generating random genomic rearrangements. Their structures have been mostly explored with low-resolution genetic techniques (e.g., fluorescence in situ hybridization or PCR), before genomic mapping and molecular characterization through sequencing became feasible. As a result, the precise nature of most chromosomal rearrangements remains unknown, whereas, more recently, balancers have been engineered using the CRISPR-Cas9 technique for which the structure of the chromosomal rearrangement has been predesigned. Using short-read whole-genome sequencing (srWGS) and tailored bioinformatic analyses, we previously interpreted the structure of four chromosomal balancers randomly created by mutagenesis processes. Here, we have extended our analyses to five CRISPR-Cas9 balancers and 17 additional traditional balancing rearrangements. We detected and experimentally validated their breakpoints and have interpreted the balancer structures. Many of the balancers were found to be more intricate than previously described, being composed of complex genomic rearrangements (CGRs) such as chromoanagenesis-like events. Furthermore, srWGS revealed additional structural variants and CGRs not known to be part of the balancer genomes. Altogether, our study provides a comprehensive resource of complex genomic variations in C. elegans and highlights the power of srWGS to study the complexity of genomes by applying tailored analyses.


Subject(s)
Caenorhabditis elegans , Chromosomes , Animals , Caenorhabditis elegans/genetics , In Situ Hybridization, Fluorescence , Mutation , Genomics
2.
PLoS Biol ; 19(5): e3001221, 2021 05.
Article in English | MEDLINE | ID: mdl-33939688

ABSTRACT

Premature termination codons (PTC) cause over 10% of genetic disease cases. Some aminoglycosides that bind to the ribosome decoding center can induce PTC readthrough and restore low levels of full-length functional proteins. However, concomitant inhibition of protein synthesis limits the extent of PTC readthrough that can be achieved by aminoglycosides like G418. Using a cell-based screen, we identified a small molecule, the phenylpyrazoleanilide Y-320, that potently enhances TP53, DMD, and COL17A1 PTC readthrough by G418. Unexpectedly, Y-320 increased cellular protein levels and protein synthesis, measured by SYPRO Ruby protein staining and puromycin labeling, as well as ribosome biogenesis measured using antibodies to rRNA and ribosomal protein S6. Y-320 did not increase the rate of translation elongation and it exerted its effects independently of mTOR signaling. At the single cell level, exposure to Y-320 and G418 increased ribosome content and protein synthesis which correlated strongly with PTC readthrough. As a single agent, Y-320 did not affect translation fidelity measured using a luciferase reporter gene but it enhanced misincorporation by G418. RNA-seq data showed that Y-320 up-regulated the expression of CXC chemokines CXCL10, CXCL8, CXCL2, CXCL11, CXCL3, CXCL1, and CXCL16. Several of these chemokines exert their cellular effects through the receptor CXCR2 and the CXCR2 antagonist SB225002 reduced cellular protein levels and PTC readthrough in cells exposed to Y-320 and G418. These data show that the self-limiting nature of PTC readthrough by G418 can be compensated by Y-320, a potent enhancer of PTC readthrough that increases ribosome biogenesis and protein synthesis. They also support a model whereby increased PTC readthrough is enabled by increased protein synthesis mediated by an autocrine chemokine signaling pathway. The findings also raise the possibility that inflammatory processes affect cellular propensity to readthrough agents and that immunomodulatory drugs like Y-320 might find application in PTC readthrough therapy.


Subject(s)
Aminoglycosides/pharmacology , Codon, Nonsense/genetics , Ribosomes/metabolism , Aminoglycosides/metabolism , Aminoglycosides/physiology , Cell Line , Chemokines, CXC/drug effects , Chemokines, CXC/metabolism , Codon, Nonsense/metabolism , Codon, Terminator , Gentamicins/pharmacology , Humans , Mutation/drug effects , Protein Biosynthesis/drug effects , Protein Synthesis Inhibitors , Ribosomes/drug effects
3.
Nucleic Acids Res ; 50(17): 9748-9764, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36029115

ABSTRACT

Retrograde bone morphogenetic protein (BMP) signaling at the Drosophila neuromuscular junction (NMJ) has served as a paradigm to study TGF-ß-dependent synaptic function and maturation. Yet, how retrograde BMP signaling transcriptionally regulates these functions remains unresolved. Here, we uncover a gene network, enriched for neurotransmission-related genes, that is controlled by retrograde BMP signaling in motor neurons through two Smad-binding cis-regulatory motifs, the BMP-activating (BMP-AE) and silencer (BMP-SE) elements. Unpredictably, both motifs mediate direct gene activation, with no involvement of the BMP derepression pathway regulators Schnurri and Brinker. Genome editing of candidate BMP-SE and BMP-AE within the locus of the active zone gene bruchpilot, and a novel Ly6 gene witty, demonstrated the role of these motifs in upregulating genes required for the maturation of pre- and post-synaptic NMJ compartments. Our findings uncover how Smad-dependent transcriptional mechanisms specific to motor neurons directly orchestrate a gene network required for synaptic maturation by retrograde BMP signaling.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Drosophila Proteins , Drosophila/metabolism , Gene Regulatory Networks , Neuromuscular Junction/metabolism , Animals , Animals, Genetically Modified , Drosophila/genetics , Drosophila Proteins/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
4.
J Virol ; 96(17): e0069922, 2022 09 14.
Article in English | MEDLINE | ID: mdl-35993738

ABSTRACT

Viral protein genome-linked (VPg) protein plays an essential role in protein-primed replication of plus-stranded RNA viruses. VPg is covalently linked to the 5' end of the viral RNA genome via a phosphodiester bond typically at a conserved amino acid. Whereas most viruses have a single VPg, some viruses have multiple VPgs that are proposed to have redundant yet undefined roles in viral replication. Here, we use cricket paralysis virus (CrPV), a dicistrovirus that has four nonidentical copies of VPg, as a model to characterize the role of VPg copies in infection. Dicistroviruses contain two main open reading frames (ORFs) that are driven by distinct internal ribosome entry sites (IRESs). We systematically generated single and combinatorial deletions and mutations of VPg1 to VPg4 within the CrPV infectious clone and monitored viral yield in Drosophila S2 cells. Deletion of one to three VPg copies progressively decreased viral yield and delayed viral replication, suggesting a threshold number of VPgs for productive infection. Mass spectrometry analysis of CrPV VPg-linked RNAs revealed viral RNA linkage to either a serine or threonine in VPg, mutations of which in all VPgs attenuated infection. Mutating serine 4 in a single VPg abolished viral infection, indicating a dominant negative effect. Using viral minigenome reporters that monitor dicistrovirus 5' untranslated (UTR) and IRES translation revealed a relationship between VPg copy number and the ratio of distinct IRES translation activities. We uncovered a novel viral strategy whereby VPg copies in dicistrovirus genomes compensate for the relative IRES translation efficiencies to promote infection. IMPORTANCE Genetic duplication is exceedingly rare in small RNA viral genomes, as there is selective pressure to prevent RNA genomes from expanding. However, some small RNA viruses encode multiple copies of a viral protein, most notably an unusual viral protein that is linked to the viral RNA genome. Here, we investigate a family of viruses that contains multiple viral protein genome-linked proteins and reveal a novel viral strategy whereby viral protein copy number counterbalances differences in viral protein synthesis mechanisms.


Subject(s)
Dicistroviridae , Genome, Viral , Protein Biosynthesis , RNA Virus Infections , RNA, Viral , Viral Proteins , 5' Untranslated Regions/genetics , Animals , Cell Line , Dicistroviridae/genetics , Dicistroviridae/metabolism , Drosophila/cytology , Drosophila/virology , Genome, Viral/genetics , Internal Ribosome Entry Sites/genetics , Mutation , RNA Virus Infections/virology , RNA, Viral/genetics , Serine/metabolism , Threonine/metabolism , Viral Load , Viral Proteins/biosynthesis , Viral Proteins/genetics , Viral Proteins/metabolism
5.
PLoS Genet ; 15(3): e1008004, 2019 03.
Article in English | MEDLINE | ID: mdl-30921322

ABSTRACT

Germ cell immortality, or transgenerational maintenance of the germ line, could be promoted by mechanisms that could occur in either mitotic or meiotic germ cells. Here we report for the first time that the GSP-2 PP1/Glc7 phosphatase promotes germ cell immortality. Small RNA-induced genome silencing is known to promote germ cell immortality, and we identified a separation-of-function allele of C. elegans gsp-2 that is compromised for germ cell immortality and is also defective for small RNA-induced genome silencing and meiotic but not mitotic chromosome segregation. Previous work has shown that GSP-2 is recruited to meiotic chromosomes by LAB-1, which also promoted germ cell immortality. At the generation of sterility, gsp-2 and lab-1 mutant adults displayed germline degeneration, univalents, histone methylation and histone phosphorylation defects in oocytes, phenotypes that mirror those observed in sterile small RNA-mediated genome silencing mutants. Our data suggest that a meiosis-specific function of GSP-2 ties small RNA-mediated silencing of the epigenome to germ cell immortality. We also show that transgenerational epigenomic silencing at hemizygous genetic elements requires the GSP-2 phosphatase, suggesting a functional link to small RNAs. Given that LAB-1 localizes to the interface between homologous chromosomes during pachytene, we hypothesize that small localized discontinuities at this interface could promote genomic silencing in a manner that depends on small RNAs and the GSP-2 phosphatase.


Subject(s)
Germ Cells/metabolism , Protein Phosphatase 1/physiology , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Chromosome Segregation , Genome , Germ Cells/physiology , Meiosis/physiology , Meiotic Prophase I/physiology , Methylation , Phosphoric Monoester Hydrolases , Protein Phosphatase 1/metabolism , RNA Interference/physiology , RNA, Small Interfering
6.
Nucleic Acids Res ; 47(2): 679-699, 2019 01 25.
Article in English | MEDLINE | ID: mdl-30476189

ABSTRACT

Retrograde Bone Morphogenetic Protein (BMP) signaling in neurons is essential for the differentiation and synaptic function of many neuronal subtypes. BMP signaling regulates these processes via Smad transcription factor activity, yet the scope and nature of Smad-dependent gene regulation in neurons are mostly unknown. Here, we applied a computational approach to predict Smad-binding cis-regulatory BMP-Activating Elements (BMP-AEs) in Drosophila, followed by transgenic in vivo reporter analysis to test their neuronal subtype enhancer activity in the larval central nervous system (CNS). We identified 34 BMP-AE-containing genomic fragments that are responsive to BMP signaling in neurons, and showed that the embedded BMP-AEs are required for this activity. RNA-seq analysis identified BMP-responsive genes in the CNS and revealed that BMP-AEs selectively enrich near BMP-activated genes. These data suggest that functional BMP-AEs control nearby BMP-activated genes, which we validated experimentally. Finally, we demonstrated that the BMP-AE motif mediates a conserved Smad-responsive function in the Drosophila and vertebrate CNS. Our results provide evidence that BMP signaling controls neuronal function by directly coordinating the expression of a battery of genes through widespread deployment of a conserved Smad-responsive cis-regulatory motif.


Subject(s)
Bone Morphogenetic Proteins/physiology , Drosophila Proteins/physiology , Neurons/metabolism , Response Elements , Signal Transduction , Transcriptional Activation , Animals , Antigens, Ly/genetics , Antigens, Ly/metabolism , Chick Embryo , DNA-Binding Proteins/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Evolution, Molecular , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Smad Proteins/metabolism , Smad4 Protein/metabolism , Transcription Factors/metabolism
7.
Proc Natl Acad Sci U S A ; 115(28): 7386-7391, 2018 07 10.
Article in English | MEDLINE | ID: mdl-29941601

ABSTRACT

Gene duplication and deletion are pivotal processes shaping the structural and functional repertoire of genomes, with implications for disease, adaptation, and evolution. We employed a mutation accumulation (MA) framework partnered with high-throughput genomics to assess the molecular and transcriptional characteristics of newly arisen gene copy-number variants (CNVs) in Caenorhabditis elegans populations subjected to varying intensity of selection. Here, we report a direct spontaneous genome-wide rate of gene duplication of 2.9 × 10-5/gene per generation in C. elegans, the highest for any species to date. The rate of gene deletion is sixfold lower (5 × 10-6/gene per generation). Deletions of highly expressed genes are particularly deleterious, given their paucity in even the N = 1 lines with minimal efficacy of selection. The increase in average transcript abundance of new duplicates arising under minimal selection is significantly greater than twofold compared with single copies of the same gene, suggesting that genes in segmental duplications are frequently overactive at inception. The average increase in transcriptional activity of gene duplicates is greater in the N = 1 MA lines than in MA lines with larger population bottlenecks. There is an inverse relationship between the ancestral transcription levels of new gene duplicates and population size, with duplicate copies of highly expressed genes less likely to accumulate in larger populations. Our results demonstrate a fitness cost of increased transcription following duplication, which results in purifying selection against new gene duplicates. However, on average, duplications also provide a significant increase in gene expression that can facilitate adaptation to novel environmental challenges.


Subject(s)
Adaptation, Physiological/genetics , Caenorhabditis elegans , Gene Deletion , Gene Dosage , Gene Duplication , Transcription, Genetic , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Genome-Wide Association Study
8.
Genome Res ; 27(4): 650-662, 2017 04.
Article in English | MEDLINE | ID: mdl-28325850

ABSTRACT

Chronic bacterial infections of the lung are the leading cause of morbidity and mortality in cystic fibrosis patients. Tracking bacterial evolution during chronic infections can provide insights into how host selection pressures-including immune responses and therapeutic interventions-shape bacterial genomes. We carried out genomic and phenotypic analyses of 215 serially collected Burkholderia cenocepacia isolates from 16 cystic fibrosis patients, spanning a period of 2-20 yr and a broad range of epidemic lineages. Systematic phenotypic tests identified longitudinal bacterial series that manifested progressive changes in liquid media growth, motility, biofilm formation, and acute insect virulence, but not in mucoidy. The results suggest that distinct lineages follow distinct evolutionary trajectories during lung infection. Pan-genome analysis identified 10,110 homologous gene clusters present only in a subset of strains, including genes restricted to different molecular types. Our phylogenetic analysis based on 2148 orthologous gene clusters from all isolates is consistent with patient-specific clades. This suggests that initial colonization of patients was likely by individual strains, followed by subsequent diversification. Evidence of clonal lineages shared by some patients was observed, suggesting inter-patient transmission. We observed recurrent gene losses in multiple independent longitudinal series, including complete loss of Chromosome III and deletions on other chromosomes. Recurrently observed loss-of-function mutations were associated with decreases in motility and biofilm formation. Together, our study provides the first comprehensive genome-phenome analyses of B. cenocepacia infection in cystic fibrosis lungs and serves as a valuable resource for understanding the genomic and phenotypic underpinnings of bacterial evolution.


Subject(s)
Burkholderia Infections/microbiology , Burkholderia cenocepacia/genetics , Cystic Fibrosis/microbiology , Phenotype , Polymorphism, Genetic , Adolescent , Animals , Biofilms , Burkholderia Infections/complications , Burkholderia cenocepacia/isolation & purification , Burkholderia cenocepacia/pathogenicity , Burkholderia cenocepacia/physiology , Child , Child, Preschool , Cystic Fibrosis/complications , Genotype , Humans , Lung/microbiology , Moths/microbiology , Virulence , Young Adult
9.
J Mol Cell Cardiol ; 131: 29-40, 2019 06.
Article in English | MEDLINE | ID: mdl-31004678

ABSTRACT

Although cancer cells use heparanase for tumor metastasis, favourable effects of heparanase have been reported in the management of Alzheimer's disease and diabetes. Indeed, we previously established a protective function for heparanase in the acutely diabetic heart, where it conferred cardiomyocyte resistance to oxidative stress and apoptosis by provoking changes in gene expression. In this study, we tested if overexpression of heparanase can protect the heart against chemically induced or ischemia/reperfusion (I/R) injury. Transcriptomic analysis of Hep-tg hearts reveal that 240 genes related to the stress response, immune response, cell death, and development were altered in a pro-survival direction encompassing genes promoting the unfolded protein response (UPR) and autophagy, as well as those protecting against oxidative stress. The observed UPR activation was adaptive and not apoptotic, was mediated by activation of ATF6α, and when combined with mTOR inhibition, induced autophagy. Subjecting wild type (WT) mice to increasing concentrations of the ER stress inducer thapsigargin evoked a transition from adaptive to apoptotic UPR, an effect that was attenuated in Hep-tg mouse hearts. Consistent with these observations, when exposed to I/R, the infarct size and markers of apoptosis were significantly lower in the Hep-tg heart compared to WT. Finally, UPR and autophagy inhibitors reduced the protective effects of heparanase overexpression during I/R. Our data suggest that the mechanisms that underlie the role of heparanase in promoting cell survival could be uniquely beneficial to the heart by providing protection against cellular stresses, and could be useful for exploitation as a therapeutic target for the treatment of heart disease.


Subject(s)
Glucuronidase/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Protective Agents/metabolism , Animals , Apoptosis/physiology , Autophagy/physiology , Cell Survival/physiology , Heart/physiology , Humans , Male , Mice , Mice, Inbred C57BL , Rats , Rats, Wistar , Thapsigargin/metabolism , Unfolded Protein Response/physiology
10.
FASEB J ; 32(3): 1196-1206, 2018 03.
Article in English | MEDLINE | ID: mdl-29122848

ABSTRACT

Excess circulating insulin is associated with obesity in humans and in animal models. However, the physiologic causality of hyperinsulinemia in adult obesity has rightfully been questioned because of the absence of clear evidence that weight loss can be induced by acutely reversing diet-induced hyperinsulinemia. Herein, we describe the consequences of inducible, partial insulin gene deletion in a mouse model in which animals have already been made obese by consuming a high-fat diet. A modest reduction in insulin production/secretion was sufficient to cause significant weight loss within 5 wk, with a specific effect on visceral adipose tissue. This result was associated with a reduction in the protein abundance of the lipodystrophy gene polymerase I and transcript release factor ( Ptrf; Cavin) in gonadal adipose tissue. RNAseq analysis showed that reduced insulin and weight loss also associated with a signature of reduced innate immunity. This study demonstrates that changes in circulating insulin that are too fine to adversely affect glucose homeostasis nonetheless exert control over adiposity.-Page, M. M., Skovsø, S., Cen, H., Chiu, A. P., Dionne, D. A., Hutchinson, D. F., Lim, G. E., Szabat, M., Flibotte, S., Sinha, S., Nislow, C., Rodrigues, B., Johnson, J. D. Reducing insulin via conditional partial gene ablation in adults reverses diet-induced weight gain.


Subject(s)
Diet, High-Fat/adverse effects , Gene Deletion , Homeostasis , Insulin/physiology , Obesity/prevention & control , Weight Gain/genetics , Adiposity , Animals , Body Weight , Male , Mice , Mice, Knockout , Obesity/etiology , Obesity/pathology
11.
PLoS Genet ; 12(8): e1006235, 2016 08.
Article in English | MEDLINE | ID: mdl-27508411

ABSTRACT

Forward genetic screens represent powerful, unbiased approaches to uncover novel components in any biological process. Such screens suffer from a major bottleneck, however, namely the cloning of corresponding genes causing the phenotypic variation. Reverse genetic screens have been employed as a way to circumvent this issue, but can often be limited in scope. Here we demonstrate an innovative approach to gene discovery. Using C. elegans as a model system, we used a whole-genome sequenced multi-mutation library, from the Million Mutation Project, together with the Sequence Kernel Association Test (SKAT), to rapidly screen for and identify genes associated with a phenotype of interest, namely defects in dye-filling of ciliated sensory neurons. Such anomalies in dye-filling are often associated with the disruption of cilia, organelles which in humans are implicated in sensory physiology (including vision, smell and hearing), development and disease. Beyond identifying several well characterised dye-filling genes, our approach uncovered three genes not previously linked to ciliated sensory neuron development or function. From these putative novel dye-filling genes, we confirmed the involvement of BGNT-1.1 in ciliated sensory neuron function and morphogenesis. BGNT-1.1 functions at the trans-Golgi network of sheath cells (glia) to influence dye-filling and cilium length, in a cell non-autonomous manner. Notably, BGNT-1.1 is the orthologue of human B3GNT1/B4GAT1, a glycosyltransferase associated with Walker-Warburg syndrome (WWS). WWS is a multigenic disorder characterised by muscular dystrophy as well as brain and eye anomalies. Together, our work unveils an effective and innovative approach to gene discovery, and provides the first evidence that B3GNT1-associated Walker-Warburg syndrome may be considered a ciliopathy.


Subject(s)
Eye Abnormalities/genetics , Morphogenesis/genetics , N-Acetylglucosaminyltransferases/genetics , Sensory Receptor Cells/metabolism , Animals , Brain/metabolism , Brain/pathology , Caenorhabditis elegans/genetics , Cilia/genetics , Cilia/metabolism , Eye Abnormalities/pathology , Genome , Humans , Muscular Dystrophies/genetics , Muscular Dystrophies/pathology , Mutation , Phenotype , Sensory Receptor Cells/pathology , Walker-Warburg Syndrome/genetics , trans-Golgi Network/genetics
12.
Nucleic Acids Res ; 44(14): 6583-98, 2016 08 19.
Article in English | MEDLINE | ID: mdl-27407112

ABSTRACT

Nonsense mutations introduce premature termination codons and underlie 11% of genetic disease cases. High concentrations of aminoglycosides can restore gene function by eliciting premature termination codon readthrough but with low efficiency. Using a high-throughput screen, we identified compounds that potentiate readthrough by aminoglycosides at multiple nonsense alleles in yeast. Chemical optimization generated phthalimide derivative CDX5-1 with activity in human cells. Alone, CDX5-1 did not induce readthrough or increase TP53 mRNA levels in HDQ-P1 cancer cells with a homozygous TP53 nonsense mutation. However, in combination with aminoglycoside G418, it enhanced readthrough up to 180-fold over G418 alone. The combination also increased readthrough at all three nonsense codons in cancer cells with other TP53 nonsense mutations, as well as in cells from rare genetic disease patients with nonsense mutations in the CLN2, SMARCAL1 and DMD genes. These findings open up the possibility of treating patients across a spectrum of genetic diseases caused by nonsense mutations.


Subject(s)
Aminoglycosides/pharmacology , Codon, Nonsense/genetics , Saccharomyces cerevisiae/genetics , Small Molecule Libraries/pharmacology , Alleles , Aminoglycosides/chemistry , Genetic Diseases, Inborn/genetics , HCT116 Cells , Homozygote , Humans , Paromomycin/pharmacology , Phthalimides/chemistry , Phthalimides/pharmacology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/drug effects , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Time Factors , Tripeptidyl-Peptidase 1 , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
13.
Dev Biol ; 415(1): 46-63, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27207389

ABSTRACT

Signaling by the epidermal growth factor receptor (EGFR) generates diverse developmental patterns. This requires precise control over the location and intensity of signaling. Elucidation of these regulatory mechanisms is important for understanding development and disease pathogenesis. In Caenorhabditis elegans, LIN-3/EGF induces vulval formation in the mid-body, which requires LET-23/EGFR activation only in P6.p, the vulval progenitor nearest the LIN-3 source. To identify mechanisms regulating this signaling pattern, we screened for mutations that cooperate with a let-23 gain-of-function allele to cause ectopic vulval induction. Here, we describe a dominant gain-of-function mutation in swsn-4, a component of SWI/SNF chromatin remodeling complexes. Loss-of-function mutations in multiple SWI/SNF components reveal that weak reduction in SWI/SNF activity causes ectopic vulval induction, while stronger reduction prevents adoption of vulval fates, a phenomenon also observed with increasing loss of LET-23 activity. High levels of LET-23 expression in P6.p are thought to locally sequester LIN-3, thereby preventing ectopic vulval induction, with slight reductions in its expression interfering with LIN-3 sequestration, but not vulval fate signaling. We find that SWI/SNF positively regulates LET-23 expression in P6.p descendants, providing an explanation for the similarities between let-23 and SWI/SNF mutant phenotypes. However, SWI/SNF regulation of LET-23 expression is cell-specific, with SWI/SNF repressing its expression in the ALA neuron. The swsn-4 gain-of-function mutation affects the PTH domain, and provides the first evidence that its auto-inhibitory function in yeast Sth1p is conserved in metazoan chromatin remodelers. Finally, our work supports broad use of SWI/SNF in regulating EGFR signaling during development, and suggests that dominant SWI/SNF mutations in certain human congenital anomaly syndromes may be gain-of-functions.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/embryology , Chromatin Assembly and Disassembly/physiology , ErbB Receptors/physiology , Multiprotein Complexes/physiology , Signal Transduction/physiology , Vulva/embryology , Amino Acid Sequence , Animals , Animals, Genetically Modified , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cell Cycle Proteins/physiology , Chromatin Assembly and Disassembly/genetics , Embryonic Induction , Female , Hermaphroditic Organisms , Male , Multiprotein Complexes/genetics , Mutation , Polymorphism, Single Nucleotide , Recombinant Fusion Proteins/metabolism , Species Specificity , Vulva/abnormalities
14.
Nat Methods ; 11(5): 529-34, 2014 May.
Article in English | MEDLINE | ID: mdl-24820376

ABSTRACT

We have generated a recombinant Mos1 transposon that can insert up to 45-kb transgenes into the Caenorhabditis elegans genome. The minimal Mos1 transposon (miniMos) is 550 bp long and inserts DNA into the genome at high frequency (~60% of injected animals). Genetic and antibiotic markers can be used for selection, and the transposon is active in C. elegans isolates and Caenorhabditis briggsae. We used the miniMos transposon to generate six universal Mos1-mediated single-copy insertion (mosSCI) landing sites that allow targeted transgene insertion with a single targeting vector into permissive expression sites on all autosomes. We also generated two collections of strains: a set of bright fluorescent insertions that are useful as dominant, genetic balancers and a set of lacO insertions to track genome position.


Subject(s)
Caenorhabditis elegans/genetics , DNA Transposable Elements/genetics , DNA-Binding Proteins/genetics , Transgenes , Transposases/genetics , Animals , Animals, Genetically Modified , Comparative Genomic Hybridization , Computational Biology , Genetic Engineering/methods , Genetic Markers/genetics , Green Fluorescent Proteins/metabolism , Models, Genetic , Mutagenesis, Insertional , Recombinant Proteins/metabolism , Recombination, Genetic
15.
Genome Res ; 23(10): 1749-62, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23800452

ABSTRACT

We have created a library of 2007 mutagenized Caenorhabditis elegans strains, each sequenced to a target depth of 15-fold coverage, to provide the research community with mutant alleles for each of the worm's more than 20,000 genes. The library contains over 800,000 unique single nucleotide variants (SNVs) with an average of eight nonsynonymous changes per gene and more than 16,000 insertion/deletion (indel) and copy number changes, providing an unprecedented genetic resource for this multicellular organism. To supplement this collection, we also sequenced 40 wild isolates, identifying more than 630,000 unique SNVs and 220,000 indels. Comparison of the two sets demonstrates that the mutant collection has a much richer array of both nonsense and missense mutations than the wild isolate set. We also find a wide range of rDNA and telomere repeat copy number in both sets. Scanning the mutant collection for molecular phenotypes reveals a nonsense suppressor as well as strains with higher levels of indels that harbor mutations in DNA repair genes and strains with abundant males associated with him mutations. All the strains are available through the Caenorhabditis Genetics Center and all the sequence changes have been deposited in WormBase and are available through an interactive website.


Subject(s)
Caenorhabditis elegans/genetics , Genes, Helminth , Mutation , Alleles , Animals , Caenorhabditis elegans/classification , Codon, Nonsense , DNA Copy Number Variations , DNA, Ribosomal , Databases, Nucleic Acid , Genes, Essential , Genes, Suppressor , Genetic Variation , Genome, Helminth , Genome, Mitochondrial , Heterozygote , INDEL Mutation , Male , Mutation, Missense , Phenotype , Polymorphism, Single Nucleotide , Tandem Repeat Sequences
16.
PLoS Genet ; 9(5): e1003497, 2013 May.
Article in English | MEDLINE | ID: mdl-23671424

ABSTRACT

Pairing of homologous chromosomes during early meiosis is essential to prevent the formation of aneuploid gametes. Chromosome pairing includes a step of homology search followed by the stabilization of homolog interactions by the synaptonemal complex (SC). These events coincide with dramatic changes in nuclear organization and rapid chromosome movements that depend on cytoskeletal motors and are mediated by SUN-domain proteins on the nuclear envelope, but how chromosome mobility contributes to the pairing process remains poorly understood. We show that defects in the mitochondria-localizing protein SPD-3 cause a defect in homolog pairing without impairing nuclear reorganization or SC assembly, which results in promiscuous installation of the SC between non-homologous chromosomes. Preventing SC assembly in spd-3 mutants does not improve homolog pairing, demonstrating that SPD-3 is required for homology search at the start of meiosis. Pairing center regions localize to SUN-1 aggregates at meiosis onset in spd-3 mutants; and pairing-promoting proteins, including cytoskeletal motors and polo-like kinase 2, are normally recruited to the nuclear envelope. However, quantitative analysis of SUN-1 aggregate movement in spd-3 mutants demonstrates a clear reduction in mobility, although this defect is not as severe as that seen in sun-1(jf18) mutants, which also show a stronger pairing defect, suggesting a correlation between chromosome-end mobility and the efficiency of pairing. SUN-1 aggregate movement is also impaired following inhibition of mitochondrial respiration or dynein knockdown, suggesting that mitochondrial function is required for motor-driven SUN-1 movement. The reduced chromosome-end mobility of spd-3 mutants impairs coupling of SC assembly to homology recognition and causes a delay in meiotic progression mediated by HORMA-domain protein HTP-1. Our work reveals how chromosome mobility impacts the different early meiotic events that promote homolog pairing and suggests that efficient homology search at the onset of meiosis is largely dependent on motor-driven chromosome movement.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans , Chromosome Pairing/genetics , Chromosomes/genetics , Mitochondrial Proteins/genetics , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Cell Nucleus , Meiosis , Mitochondria/genetics , Mitochondria/metabolism , Mutation , Protein Structure, Tertiary , Synaptonemal Complex/genetics
17.
BMC Genomics ; 16: 1044, 2015 Dec 09.
Article in English | MEDLINE | ID: mdl-26645535

ABSTRACT

BACKGROUND: Gene copy-number variation (CNVs), which provides the raw material for the evolution of novel genes, is widespread in natural populations. We investigated whether CNVs constitute a common mechanism of genetic change during adaptation in experimental Caenorhabditis elegans populations. Outcrossing C. elegans populations with low fitness were evolved for >200 generations. The frequencies of CNVs in these populations were analyzed by oligonucleotide array comparative genome hybridization, quantitative PCR, PCR, DNA sequencing across breakpoints, and single-worm PCR. RESULTS: Multiple duplications and deletions rose to intermediate or high frequencies in independent populations. Several lines of evidence suggest that these changes were adaptive: (i) copy-number changes reached high frequency or were fixed in a short time, (ii) many independent populations harbored CNVs spanning the same genes, and (iii) larger average size of CNVs in adapting populations relative to spontaneous CNVs. The latter is expected if larger CNVs are more likely to encompass genes under selection for a change in gene dosage. Several convergent CNVs originated in populations descended from different low fitness ancestors as well as high fitness controls. CONCLUSIONS: We show that gene copy-number changes are a common class of adaptive genetic change. Due to the high rates of origin of spontaneous duplications and deletions, copy-number changes containing the same genes arose readily in independent populations. Duplications that reached high frequencies in these adapting populations were significantly larger in span. Many convergent CNVs may be general adaptations to laboratory conditions. These results demonstrate the great potential borne by CNVs for evolutionary adaptation.


Subject(s)
Caenorhabditis elegans/genetics , DNA Copy Number Variations , Evolution, Molecular , Gene Dosage , Adaptation, Biological/genetics , Animals , Crosses, Genetic , Gene Deletion , Gene Duplication , Genetic Fitness , Genetic Variation , Genetics, Population , Mutation , Repetitive Sequences, Nucleic Acid
18.
BMC Genomics ; 16: 210, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25880765

ABSTRACT

BACKGROUND: Whole and partial chromosome losses or gains and structural chromosome changes are hallmarks of human tumors. Guanine-rich DNA, which has a potential to form a G-quadruplex (G4) structure, is particularly vulnerable to changes. In Caenorhabditis elegans, faithful transmission of G-rich DNA is ensured by the DOG-1/FANCJ deadbox helicase. RESULTS: To identify a spectrum of mutations, after long-term propagation, we combined whole genome sequencing (WGS) and oligonucleotide array Comparative Genomic Hybridization (oaCGH) analysis of a C. elegans strain that was propagated, in the absence of DOG-1 and MDF-1/MAD1, for a total of 470 generations, with samples taken for long term storage (by freezing) in generations 170 and 270. We compared the genomes of F170 and F470 strains and identified 94 substitutions, 17 InDels, 3 duplications, and 139 deletions larger than 20 bp. These homozygous variants were predicted to impact 101 protein-coding genes. Phenotypic analysis of this strain revealed remarkable fitness recovery indicating that mutations, which have accumulated in the strain, are not only tolerated but also cooperate to achieve long-term population survival in the absence of DOG-1 and MDF-1. Furthermore, deletions larger than 20 bp were the only variants that frequently occurred in G-rich DNA. We showed that 126 of the possible 954 predicted monoG/C tracts, larger than 14 bp, were deleted in unc-46 mdf-1 such-4; dog-1 F470 (JNC170). CONCLUSIONS: Here, we identified variants that accumulated in C. elegans' genome after long-term propagation in the absence of DOG-1 and MDF-1. We showed that DNA sequences, with G4-forming potential, are vulnerable to deletion-formation in this genetic background.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Cell Cycle Proteins/genetics , DNA Helicases/genetics , Genome , Animals , Caenorhabditis elegans/metabolism , Comparative Genomic Hybridization , G-Quadruplexes , High-Throughput Nucleotide Sequencing , Homozygote , Mutation , Phenotype , Sequence Analysis, DNA , Sequence Deletion
19.
Front Physiol ; 14: 1110550, 2023.
Article in English | MEDLINE | ID: mdl-36760531

ABSTRACT

The reversible lipid modification protein S-palmitoylation can dynamically modify the localization, diffusion, function, conformation and physical interactions of substrate proteins. Dysregulated S-palmitoylation is associated with a multitude of human diseases including brain and metabolic disorders, viral infection and cancer. However, the diverse expression patterns of the genes that regulate palmitoylation in the broad range of human cell types are currently unexplored, and their expression in commonly used cell lines that are the workhorse of basic and preclinical research are often overlooked when studying palmitoylation dependent processes. We therefore created CellPalmSeq (https://cellpalmseq.med.ubc.ca), a curated RNAseq database and interactive webtool for visualization of the expression patterns of the genes that regulate palmitoylation across human single cell types, bulk tissue, cancer cell lines and commonly used laboratory non-human cell lines. This resource will allow exploration of these expression patterns, revealing important insights into cellular physiology and disease, and will aid with cell line selection and the interpretation of results when studying important cellular processes that depend on protein S-palmitoylation.

20.
Dev Biol ; 352(1): 92-103, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21256840

ABSTRACT

Organismal growth and body size are influenced by both genetic and environmental factors. We have utilized the strong molecular genetic techniques available in the nematode Caenorhabditis elegans to identify genetic determinants of body size. In C. elegans, DBL-1, a member of the conserved family of secreted growth factors known as the Transforming Growth Factor ß superfamily, is known to play a major role in growth control. The mechanisms by which other determinants of body size function, however, is less well understood. To identify additional genes involved in body size regulation, a genetic screen for small mutants was previously performed. One of the genes identified in that screen was sma-21. We now demonstrate that sma-21 encodes ADT-2, a member of the ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family of secreted metalloproteases. ADAMTS proteins are believed to remodel the extracellular matrix and may modulate the activity of extracellular signals. Genetic interactions suggest that ADT-2 acts in parallel with or in multiple size regulatory pathways. We demonstrate that ADT-2 is required for normal levels of expression of a DBL-1-responsive transcriptional reporter. We further demonstrate that adt-2 regulatory sequences drive expression in glial-like and vulval cells, and that ADT-2 activity is required for normal cuticle collagen fibril organization. We therefore propose that ADT-2 regulates body size both by modulating TGFß signaling activity and by maintaining normal cuticle structure.


Subject(s)
ADAM Proteins/metabolism , Body Size , Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/anatomy & histology , Caenorhabditis elegans/enzymology , Collagen/metabolism , Integumentary System/anatomy & histology , Neuropeptides/metabolism , Transforming Growth Factor beta/metabolism , ADAM Proteins/chemistry , ADAM Proteins/genetics , Amino Acid Sequence , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/genetics , Cell Nucleus/metabolism , Epistasis, Genetic , Genes, Helminth/genetics , Genes, Reporter/genetics , Green Fluorescent Proteins/metabolism , Molecular Sequence Data , Mutation/genetics , Phenotype , RNA Interference , Recombinant Fusion Proteins/metabolism , Signal Transduction , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL