Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Nat Immunol ; 25(6): 1073-1082, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816615

ABSTRACT

A key barrier to the development of vaccines that induce broadly neutralizing antibodies (bnAbs) against human immunodeficiency virus (HIV) and other viruses of high antigenic diversity is the design of priming immunogens that induce rare bnAb-precursor B cells. The high neutralization breadth of the HIV bnAb 10E8 makes elicitation of 10E8-class bnAbs desirable; however, the recessed epitope within gp41 makes envelope trimers poor priming immunogens and requires that 10E8-class bnAbs possess a long heavy chain complementarity determining region 3 (HCDR3) with a specific binding motif. We developed germline-targeting epitope scaffolds with affinity for 10E8-class precursors and engineered nanoparticles for multivalent display. Scaffolds exhibited epitope structural mimicry and bound bnAb-precursor human naive B cells in ex vivo screens, protein nanoparticles induced bnAb-precursor responses in stringent mouse models and rhesus macaques, and mRNA-encoded nanoparticles triggered similar responses in mice. Thus, germline-targeting epitope scaffold nanoparticles can elicit rare bnAb-precursor B cells with predefined binding specificities and HCDR3 features.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , HIV Antibodies , HIV Envelope Protein gp41 , HIV Infections , HIV-1 , Macaca mulatta , Animals , Humans , HIV Envelope Protein gp41/immunology , HIV Antibodies/immunology , Mice , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV-1/immunology , HIV Infections/immunology , HIV Infections/prevention & control , HIV Infections/virology , Vaccination , Broadly Neutralizing Antibodies/immunology , B-Lymphocytes/immunology , Nanoparticles/chemistry , Female , Complementarity Determining Regions/immunology , Epitopes/immunology
3.
PLoS Pathog ; 15(4): e1007674, 2019 04.
Article in English | MEDLINE | ID: mdl-30958867

ABSTRACT

Viral myocarditis is a serious disease, commonly caused by type B coxsackieviruses (CVB). Here we show that innate immune protection against CVB3 myocarditis requires the IFIT (IFN-induced with tetratricopeptide) locus, which acts in a biphasic manner. Using IFIT locus knockout (IFITKO) cardiomyocytes we show that, in the absence of the IFIT locus, viral replication is dramatically increased, indicating that constitutive IFIT expression suppresses CVB replication in this cell type. IFNß pre-treatment strongly suppresses CVB3 replication in wild type (wt) cardiomyocytes, but not in IFITKO cardiomyocytes, indicating that other interferon-stimulated genes (ISGs) cannot compensate for the loss of IFITs in this cell type. Thus, in isolated wt cardiomyocytes, the anti-CVB3 activity of IFITs is biphasic, being required for protection both before and after T1IFN signaling. These in vitro findings are replicated in vivo. Using novel IFITKO mice we demonstrate accelerated CVB3 replication in pancreas, liver and heart in the hours following infection. This early increase in virus load in IFITKO animals accelerates the induction of other ISGs in several tissues, enhancing virus clearance from some tissues, indicating that-in contrast to cardiomyocytes-other ISGs can offset the loss of IFITs from those cell types. In contrast, CVB3 persists in IFITKO hearts, and myocarditis occurs. Thus, cardiomyocytes have a specific, biphasic, and near-absolute requirement for IFITs to control CVB infection.


Subject(s)
Carrier Proteins/physiology , Coxsackievirus Infections/prevention & control , Enterovirus B, Human/pathogenicity , Myocarditis/prevention & control , Myocytes, Cardiac/enzymology , Adaptor Proteins, Signal Transducing , Animals , Cells, Cultured , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/virology , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocarditis/metabolism , Myocarditis/virology , RNA-Binding Proteins , Virus Replication
4.
PLoS Pathog ; 12(8): e1005861, 2016 08.
Article in English | MEDLINE | ID: mdl-27580079

ABSTRACT

Innate immune responses in general, and type I interferons (T1IFNs) in particular, play an important and often essential role during primary viral infections, by directly combatting the virus and by maximizing the primary adaptive immune response. Several studies have suggested that T1IFNs also contribute very substantially to the secondary (recall) response; they are thought (i) to be required to drive the early attrition of memory T cells, (ii) to support the subsequent expansion of surviving virus-specific memory cells, and (iii) to assist in the suppression and clearance of the infectious agent. However, many of these observations were predicated upon models in which T1IFN signaling was interrupted prior to a primary immune response, raising the possibility that the resulting memory cells might be intrinsically abnormal. We have directly addressed this by using an inducible-Cre model system in which the host remains genetically-intact during the primary response to infection, and in which T1IFN signaling can be effectively ablated prior to secondary viral challenge. We report that, in stark contrast to primary infection, T1IFN signaling is not required during the recall response. IFNαßR-deficient memory CD8+ and CD4+ memory T cells undergo attrition and expansion with kinetics that are indistinguishable from those of receptor-sufficient cells. Moreover, even in the absence of functional T1IFN signaling, the host's immune capacity to rapidly suppress, and then to eradicate, a secondary infection remains intact. Thus, this study shows that T1IFN signaling is dispensable during the recall response to a virus infection. Moreover, two broader implications may be drawn. First, a T cell's requirement for a cytokine is highly dependent on the cell's maturation / differentiation status. Consequently, second, these data underscore the importance of evaluating a gene's impact by modulating its expression or function in a temporally-controllable manner.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Interferon Type I/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Signal Transduction/immunology , Animals , Interferon Type I/genetics , Lymphocytic Choriomeningitis/genetics , Mice , Mice, Transgenic , Signal Transduction/genetics
5.
J Immunol ; 193(4): 1873-85, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-25015828

ABSTRACT

In vitro studies have shown that naive CD8(+) T cells are unable to express most of their effector proteins until after at least one round of cell division has taken place. We have reassessed this issue in vivo and find that naive CD8(+) T cells mount Ag-specific responses within hours of infection, before proliferation has commenced. Newly activated naive Ag-specific CD8(+) T cells produce a rapid pulse of IFN-γ in vivo and begin to accumulate granzyme B and perforin. Later, in vivo cytolytic activity is detectable, coincident with the initiation of cell division. Despite the rapid development of these functional attributes, no antiviral effect was observed early during infection, even when the cells are present in numbers similar to those of virus-specific memory cells. The evolutionary reason for the pulse of IFN-γ synthesis by naive T cells is uncertain, but the lack of antiviral impact suggests that it may be regulatory.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Interferon-gamma/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/transplantation , Cell Differentiation/immunology , Cell Division/immunology , Granzymes/biosynthesis , Immunologic Memory/immunology , Interferon-gamma/biosynthesis , Lymphocyte Activation/immunology , Lymphocytic Choriomeningitis/virology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Perforin/biosynthesis , T-Box Domain Proteins/biosynthesis , Tumor Necrosis Factor-alpha/biosynthesis , Virus Replication/immunology
6.
J Infect Dis ; 211(1): 40-4, 2015 Jan 01.
Article in English | MEDLINE | ID: mdl-25035516

ABSTRACT

Human immunodeficiency virus (HIV) accesses the brain early in infection and can lead to neurocognitive disorders. The brain can also serve as a viral reservoir, but how virus is controlled in the brain is unknown. To examine this, CD8-depleting monoclonal antibody was injected into the cerebrospinal fluid of rhesus monkeys with chronic simian immunodeficiency virus (SIV) infection. This treatment led to the rapid increase of SIV in the brain. Virus in the brain is maintained by active suppression from the host immune system. This dynamic interaction can be manipulated in efforts to control and eradicate virus from the brain and other reservoirs.


Subject(s)
Brain/immunology , Brain/virology , CD8-Positive T-Lymphocytes/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Animals , Antibodies, Monoclonal/immunology , Macaca mulatta/immunology , Macaca mulatta/virology , Simian Acquired Immunodeficiency Syndrome/cerebrospinal fluid
7.
J Virol ; 88(9): 5087-99, 2014 May.
Article in English | MEDLINE | ID: mdl-24574394

ABSTRACT

UNLABELLED: Acute coxsackievirus B3 (CVB3) infection is one of the most prevalent causes of acute myocarditis, a disease that frequently is identified only after the sudden death of apparently healthy individuals. CVB3 infects cardiomyocytes, but the infection is highly focal, even in the absence of a strong adaptive immune response, suggesting that virus spread within the heart may be tightly constrained by the innate immune system. Type I interferons (T1IFNs) are an obvious candidate, and T1IFN receptor (T1IFNR) knockout mice are highly susceptible to CVB3 infection, succumbing within a few days of challenge. Here, we investigated the role of T1IFNs in the heart using a mouse model in which the T1IFNR gene can be ablated in vivo, specifically in cardiomyocytes. We found that T1IFN signaling into cardiomyocytes contributed substantially to the suppression of viral replication and infectious virus yield in the heart; in the absence of such signaling, virus titers were markedly elevated by day 3 postinfection (p.i.) and remained high at day 12 p.i., a time point at which virus was absent from genetically intact littermates, suggesting that the T1IFN-unresponsive cardiomyocytes may act as a safe haven for the virus. Nevertheless, in these mice the myocardial infection remained highly focal, despite the cardiomyocytes' inability to respond to T1IFN, indicating that other factors, as yet unidentified, are sufficient to prevent the more widespread dissemination of the infection throughout the heart. The absence of T1IFN signaling into cardiomyocytes also was accompanied by a profound acceleration and exacerbation of myocarditis and by a significant increase in mortality. IMPORTANCE: Acute coxsackievirus B3 (CVB3) infection is one of the most common causes of acute myocarditis, a serious and sometimes fatal disease. To optimize treatment, it is vital that we identify the immune factors that limit virus spread in the heart and other organs. Type I interferons play a key role in controlling many virus infections, but it has been suggested that they may not directly impact CVB3 infection within the heart. Here, using a novel line of transgenic mice, we show that these cytokines signal directly into cardiomyocytes, limiting viral replication, myocarditis, and death.


Subject(s)
Coxsackievirus Infections/immunology , Coxsackievirus Infections/virology , Enterovirus B, Human/immunology , Myocarditis/immunology , Myocarditis/virology , Myocytes, Cardiac/virology , Receptor, Interferon alpha-beta/immunology , Animals , Disease Models, Animal , Mice , Mice, Knockout , Mice, Transgenic , Myocarditis/pathology , Myocytes, Cardiac/physiology , Receptor, Interferon alpha-beta/deficiency , Survival Analysis
8.
J Immunol ; 191(8): 4211-22, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-24026080

ABSTRACT

CD8(+) memory T cells are abundant and are activated in a near-synchronous manner by infection, thereby providing a unique opportunity to evaluate the coordinate functional and phenotypic changes that occur in vivo within hours of viral challenge. Using two disparate virus challenges of mice, we show that splenic CD8(+) memory T cells rapidly produced IFN-γ in vivo; however, within 18-24 h, IFN-γ synthesis was terminated and remained undetectable for ≥ 48 h. A similar on/off response was observed in CD8(+) memory T cells in the peritoneal cavity. Cessation of IFN-γ production in vivo occurred despite the continued presence of immunostimulatory viral Ag, indicating that the initial IFN-γ response had been actively downregulated and that the cells had been rendered refractory to subsequent in vivo Ag contact. Downregulation of IFN-γ synthesis was accompanied by the upregulation of inhibitory receptor expression on the T cells, and ex vivo analyses using synthetic peptides revealed a concurrent hierarchical loss of cytokine responsiveness (IL-2, then TNF, then IFN-γ) taking place during the first 24 h following Ag contact. Thus, within hours of virus challenge, CD8(+) memory T cells display the standard hallmarks of T cell exhaustion, a phenotype that previously was associated only with chronic diseases and that is generally viewed as a gradually developing and pathological change in T cell function. Our data suggest that, instead, the "exhaustion" phenotype is a rapid and normal physiological T cell response.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Immunologic Memory , Lymphocytic Choriomeningitis/immunology , Lymphocytic choriomeningitis virus/immunology , Animals , CD8-Positive T-Lymphocytes/metabolism , Costimulatory and Inhibitory T-Cell Receptors/biosynthesis , Costimulatory and Inhibitory T-Cell Receptors/immunology , Down-Regulation , Interferon-gamma/biosynthesis , Interleukin-2/biosynthesis , Lymphocyte Activation , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Poxviridae Infections/immunology , Spleen/cytology , Spleen/immunology , Tumor Necrosis Factors/biosynthesis , Up-Regulation , Vaccinia virus/genetics , Vaccinia virus/immunology
9.
Sci Transl Med ; 16(748): eadn0223, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38753806

ABSTRACT

A protective HIV vaccine will likely need to induce broadly neutralizing antibodies (bnAbs). Vaccination with the germline-targeting immunogen eOD-GT8 60mer adjuvanted with AS01B was found to induce VRC01-class bnAb precursors in 97% of vaccine recipients in the IAVI G001 phase 1 clinical trial; however, heterologous boost immunizations with antigens more similar to the native glycoprotein will be required to induce bnAbs. Therefore, we designed core-g28v2 60mer, a nanoparticle immunogen to be used as a first boost after eOD-GT8 60mer priming. We found, using a humanized mouse model approximating human conditions of VRC01-class precursor B cell diversity, affinity, and frequency, that both protein- and mRNA-based heterologous prime-boost regimens induced VRC01-class antibodies that gained key mutations and bound to near-native HIV envelope trimers lacking the N276 glycan. We further showed that VRC01-class antibodies induced by mRNA-based regimens could neutralize pseudoviruses lacking the N276 glycan. These results demonstrated that heterologous boosting can drive maturation toward VRC01-class bnAb development and supported the initiation of the IAVI G002 phase 1 trial testing mRNA-encoded nanoparticle prime-boost regimens.


Subject(s)
AIDS Vaccines , Antibodies, Neutralizing , HIV Antibodies , Animals , Humans , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , HIV Antibodies/immunology , Mice , Vaccination , Immunization, Secondary , HIV-1/immunology , HIV Infections/immunology , HIV Infections/prevention & control , Broadly Neutralizing Antibodies/immunology
10.
J Virol ; 84(23): 12110-24, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20861268

ABSTRACT

Autophagy can play an important part in protecting host cells during virus infection, and several viruses have developed strategies by which to evade or even exploit this homeostatic pathway. Tissue culture studies have shown that poliovirus, an enterovirus, modulates autophagy. Herein, we report on in vivo studies that evaluate the effects on autophagy of coxsackievirus B3 (CVB3). We show that in pancreatic acinar cells, CVB3 induces the formation of abundant small autophagy-like vesicles and permits amphisome formation. However, the virus markedly, albeit incompletely, limits the fusion of autophagosomes (and/or amphisomes) with lysosomes, and, perhaps as a result, very large autophagy-related structures are formed within infected cells; we term these structures megaphagosomes. Ultrastructural analyses confirmed that double-membraned autophagy-like vesicles were present in infected pancreatic tissue and that the megaphagosomes were related to the autophagy pathway; they also revealed a highly organized lattice, the individual components of which are of a size consistent with CVB RNA polymerase; we suggest that this may represent a coxsackievirus replication complex. Thus, these in vivo studies demonstrate that CVB3 infection dramatically modifies autophagy in infected pancreatic acinar cells.


Subject(s)
Autophagy/physiology , Coxsackievirus Infections/physiopathology , Enterovirus B, Human , Pancreas/cytology , Phagosomes/virology , Analysis of Variance , Animals , Blotting, Western , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal , Microscopy, Electron, Transmission , Microscopy, Immunoelectron , Pancreas/virology , Phagosomes/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL