Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
medRxiv ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38558994

ABSTRACT

HIV incidence has been declining in Africa with scale-up of HIV interventions. However, there is limited data on HIV evolutionary trends in African populations with waning epidemics. We evaluated changes in HIV viral diversity and genetic divergence in southern Uganda over a twenty-five-year period spanning the introduction and scale-up of HIV prevention and treatment programs using HIV sequence and survey data from the Rakai Community Cohort Study, an open longitudinal population-based HIV surveillance cohort. Gag (p24) and env (gp41) HIV data were generated from persons living with HIV (PLHIV) in 31 inland semi-urban trading and agrarian communities (1994 to 2018) and four hyperendemic Lake Victoria fishing communities (2011 to 2018) under continuous surveillance. HIV subtype was assigned using the Recombination Identification Program with phylogenetic confirmation. Inter-subtype diversity was estimated using the Shannon diversity index and intra-subtype diversity with the nucleotide diversity and pairwise TN93 genetic distance. Genetic divergence was measured using root-to-tip distance and pairwise TN93 genetic distance analyses. Evolutionary dynamics were assessed among demographic and behavioral sub-groups, including by migration status. 9,931 HIV sequences were available from 4,999 PLHIV, including 3,060 and 1,939 persons residing in inland and fishing communities, respectively. In inland communities, subtype A1 viruses proportionately increased from 14.3% in 1995 to 25.9% in 2017 (p<0.001), while those of subtype D declined from 73.2% in 1995 to 28.2% in 2017 (p<0.001). The proportion of viruses classified as recombinants significantly increased by more than four-fold. Inter-subtype HIV diversity has generally increased. While p24 intra-subtype genetic diversity and divergence leveled off after 2014, diversity and divergence of gp41 increased through 2017. Inter- and intra-subtype viral diversity increased across all population sub-groups, including among individuals with no recent migration history or extra-community sexual partners. This study provides insights into population-level HIV evolutionary dynamics in declining African HIV epidemics following the scale-up of HIV prevention and treatment programs. Continued molecular surveillance may provide a better understanding of the dynamics driving population HIV evolution and yield important insights for epidemic control and vaccine development.

2.
Viruses ; 16(1)2023 12 21.
Article in English | MEDLINE | ID: mdl-38275954

ABSTRACT

Molecular investigations of the HIV-1 pol region (2253-5250 in the HXB2 genome) were conducted on sequences obtained from 331 individuals infected with HIV-1 in Cyprus between 2017 and 2021. This study unveiled four distinct HIV-1 putative transmission clusters, encompassing 19 previously unidentified HIV-1 recombinants. These recombinants, each comprising eight, three, four, and four sequences, respectively, did not align with previously established Circulating Recombinant Forms (CRFs). To characterize these novel HIV-1 recombinants, near-full-length genome sequences were successfully obtained for 16 of the 19 recombinants (790-8795 in the HXB2 genome) using an in-house-developed RT-PCR assay. Phylogenetic analyses, employing MEGAX and Cluster-Picker, along with confirmatory neighbor-joining tree analyses of subregions, were conducted to identify distinct clusters and determine subtypes. The uniqueness of the HIV-1 recombinants was evident in their exclusive clustering within generated maximum likelihood trees. Recombination analyses highlighted the distinct chimeric nature of these recombinants, with consistent mosaic patterns observed across all sequences within each of the four putative transmission clusters. Conclusive genetic characterization identified four novel HIV-1 CRFs: CRF129_56G, CRF130_A1B, CRF131_A1B, and CRF138_cpx. CRF129_56G exhibited two recombination breakpoints and three fragments of subtypes CRF56_cpx and G. Both CRF130_A1B and CRF131_A1B featured seven recombination breakpoints and eight fragments of subtypes A1 and B. CRF138_cpx displayed five recombination breakpoints and six fragments of subtypes CRF22_01A1 and F2, along with an unclassified fragment. Additional BLAST analyses identified a Unique Recombinant Form (URF) of CRF138_cpx with three additional recombination sites, involving subtype F2, a fragment of unknown subtype origin, and CRF138_cpx. Post-identification, all putative transmission clusters remained active, with CRF130_A1B, CRF131_A1B, and CRF138_cpx clusters exhibiting further growth. Furthermore, international connections were identified through BLAST analyses, linking one sequence from the USA to the CRF130_A1B strain, and three sequences from Belgium and Cameroon to the CRF138_cpx strain. This study contributes valuable insights into the dynamic landscape of HIV-1 diversity and transmission patterns, emphasizing the need for ongoing molecular surveillance and global collaboration in tracking emerging viral variants.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV Infections/epidemiology , HIV Infections/genetics , HIV-1/genetics , Molecular Epidemiology , Phylogeny , Cyprus/epidemiology , Genome, Viral , Recombination, Genetic , Sequence Analysis, DNA , HIV Seropositivity/genetics , Genotype , Genetic Variation
SELECTION OF CITATIONS
SEARCH DETAIL