ABSTRACT
Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and is the causative infectious agent of Kaposi sarcoma and two malignancies of B cell origin. To date, there is no licensed KSHV vaccine. Development of an effective vaccine against KSHV continues to be limited by a poor understanding of how the virus initiates acute primary infection in vivo in diverse human cell types. The role of glycoprotein H (gH) in herpesvirus entry mechanisms remains largely unresolved. To characterize the requirement for KSHV gH in the viral life cycle and in determination of cell tropism, we generated and characterized a mutant KSHV in which expression of gH was abrogated. Using a bacterial artificial chromosome containing a complete recombinant KSHV genome and recombinant DNA technology, we inserted stop codons into the gH coding region. We used electron microscopy to reveal that the gH-null mutant virus assembled and exited from cells normally, compared to wild-type virus. Using purified virions, we assessed infectivity of the gH-null mutant in diverse mammalian cell types in vitro Unlike wild-type virus or a gH-containing revertant, the gH-null mutant was unable to infect any of the epithelial, endothelial, or fibroblast cell types tested. However, its ability to infect B cells was equivocal and remains to be investigated in vivo due to generally poor infectivity in vitro Together, these results suggest that gH is critical for KSHV infection of highly permissive cell types, including epithelial, endothelial, and fibroblast cells.IMPORTANCE All homologues of herpesvirus gH studied to date have been implicated in playing an essential role in viral infection of diverse permissive cell types. However, the role of gH in the mechanism of KSHV infection remains largely unresolved. In this study, we generated a gH-null mutant KSHV and provided evidence that deficiency of gH expression did not affect viral particle assembly or egress. Using the gH-null mutant, we showed that gH was indispensable for KSHV infection of epithelial, endothelial, and fibroblast cells in vitro This suggests that gH is an important target for the development of a KSHV prophylactic vaccine to prevent initial viral infection.
Subject(s)
Endothelial Cells/virology , Epithelial Cells/virology , Fibroblasts/virology , Herpesviridae Infections/virology , Herpesvirus 8, Human/physiology , Viral Envelope Proteins/genetics , Viral Tropism , Genome, Viral , Genomics/methods , Humans , Mutation , Viral Envelope Proteins/metabolism , Virion , Virus InternalizationABSTRACT
Discovering how to improve survival and establishing clinical reference points for children diagnosed with endemic Burkitt lymphoma (eBL) in resource-constrained settings has recaptured international attention. Using multivariate analyses, we evaluated 428 children with eBL in Kenya for age, gender, tumor stage, nutritional status, hemoglobin, lactate dehydrogenase (LDH), Epstein-Barr virus (EBV) and Plasmodium falciparum prior to induction of chemotherapy (cyclophosphamide, vincristine, methotrexate and doxorubicin) to identify predictive and prognostic biomarkers of survival. During this 10 year prospective study period, 22% died in-hospital and 78% completed six-courses of chemotherapy. Of those, 16% relapsed or died later; 31% achieved event-free-survival; and 31% were lost to follow-up; the overall one-year survival was 45%. After adjusting for covariates, low hemoglobin (<8 g/dL) and high LDH (>400 mU/ml) were associated with increased risk of death (adjusted Hazard Ratio (aHR) = 1.57 [0.97-2.41]) and aHR = 1.84, [0.91-3.69], respectively). Anemic children with malaria were 3.55 times more likely to die [1.10-11.44] compared to patients without anemia or malarial infection. EBV load did not differ by tumor stage nor was it associated with survival. System-level factors can also contribute to poor outcomes. Children were more likely to die when inadvertently overdosed by more than 115% of the correct dose of cyclophosphamide (a HR = 1.43 [0.84-2.43]) or doxorubicin (a HR = 1.25, [0.66-2.35]), compared with those receiving accurate doses of the respective agent in this setting. This study codifies risk factors associated with poor outcomes for eBL patients in Africa and provides a benchmark by which to assess improvements in survival for new chemotherapeutic approaches.
Subject(s)
Burkitt Lymphoma/epidemiology , Survival Rate , Adolescent , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biopsy , Burkitt Lymphoma/diagnosis , Burkitt Lymphoma/history , Burkitt Lymphoma/mortality , Child , Child, Preschool , Cohort Studies , Female , History, 21st Century , Hospital Mortality , Humans , Infant , Kaplan-Meier Estimate , Kenya/epidemiology , Male , Neoplasm Staging , Population Surveillance , Risk FactorsABSTRACT
Endemic Burkitt lymphoma (eBL) is associated with Epstein-Barr virus (EBV) and Plasmodium falciparum coinfections. Malaria appears to dysregulate immunity that would otherwise control EBV, thereby contributing to eBL etiology. Juxtaposed to human genetic variants associated with protection from malaria, it has been hypothesized that such variants could decrease eBL susceptibility, historically referred to as "the protective hypothesis." Past studies attempting to link sickle cell trait (HbAS), which is known to be protective against malaria, with protection from eBL were contradictory and underpowered. Therefore, using a case-control study design, we examined HbAS frequency in 306 Kenyan children diagnosed with eBL compared to 537 geographically defined and ethnically matched controls. We found 23.8% HbAS for eBL patients, which was not significantly different compared to 27.0% HbAS for controls [odds ratio (OR) = 0.85; 95% confidence interval (CI) 0.61-1.17; p-value = 0.33]. Even though cellular EBV titers, indicative of the number of latently infected B cells, were significantly higher (p-value < 0.0003) in children residing in malaria holoendemic compared to hypoendemic areas, levels were not associated with HbAS genotype. Combined, this suggests that although HbAS protects against severe malaria and hyperparasitemia, it is not associated with viral control or eBL protection. However, based on receiver operating characteristic curves factors that enable the establishment of EBV persistence, in contrast to those involved in EBV lytic reactivation, may have utility as an eBL precursor biomarker. This has implications for future human genetic association studies to consider variants influencing control over EBV in addition to malaria as risk factors for eBL.
Subject(s)
Biomarkers/blood , Burkitt Lymphoma/complications , Ethnicity , Herpesvirus 4, Human/isolation & purification , Malaria/complications , Sickle Cell Trait/complications , Adolescent , Base Sequence , Burkitt Lymphoma/epidemiology , Case-Control Studies , Child , Child, Preschool , DNA Primers , Female , Genotype , Humans , Malaria/epidemiology , Male , Polymerase Chain Reaction , Sickle Cell Trait/geneticsABSTRACT
SARS-CoV-2 vaccines have unquestionably blunted the overall impact of the COVID-19 pandemic, but host factors such as age, sex, obesity, and other co-morbidities can affect vaccine efficacy. We identified individuals in a relatively healthy population of healthcare workers (CORALE study cohort) who had unexpectedly low peak anti-spike receptor binding domain (S-RBD) antibody levels after receiving the BNT162b2 vaccine. Compared to matched controls, "low responders" had fewer spike-specific antibody-producing B cells after the second and third/booster doses. Moreover, their spike-specific T cell receptor (TCR) repertoire had less depth and their CD4+ and CD8+T cell responses to spike peptide stimulation were less robust. Single cell transcriptomic evaluation of peripheral blood mononuclear cells revealed activation of aging pathways in low responder B and CD4+T cells that could underlie their attenuated anti-S-RBD antibody production. Premature lymphocyte aging may therefore contribute to a less effective humoral response and could reduce vaccination efficacy.
ABSTRACT
Children diagnosed with endemic Burkitt lymphoma (eBL) are deficient in interferon-γ (IFN-γ) responses to Epstein-Barr Nuclear Antigen1 (EBNA1), the viral protein that defines the latency I pattern in this B cell tumor. However, the contributions of immune-regulatory cytokines and phenotypes of the EBNA1-specific T cells have not been characterized for eBL. Using a bespoke flow cytometry assay we measured intracellular IFN-γ, IL-10, IL-17A expression and phenotyped CD4+ and CD8+ T cell effector memory subsets specific to EBNA1 for eBL patients compared to two groups of healthy children with divergent malaria exposures. In response to EBNA1 and a malaria antigen (PfSEA-1A), the three study groups exhibited strikingly different cytokine expression and T cell memory profiles. EBNA1-specific IFN-γ-producing CD4+ T cell response rates were lowest in eBL (40%) compared to children with high malaria (84%) and low malaria (66%) exposures (p < 0.0001 and p = 0.0004, respectively). However, eBL patients did not differ in CD8+ T cell response rates or the magnitude of IFN-γ expression. In contrast, eBL children were more likely to have EBNA1-specific CD4+ T cells expressing IL-10, and less likely to have polyfunctional IFN-γ+IL-10+ CD4+ T cells (p = 0.02). They were also more likely to have IFN-γ+IL-17A+, IFN-γ+ and IL-17A+ CD8+ T cell subsets compared to healthy children. Cytokine-producing T cell subsets were predominantly CD45RA+CCR7+ TNAIVE-LIKE cells, yet PD-1, a marker of persistent activation/exhaustion, was more highly expressed by the central memory (TCM) and effector memory (TEM) T cell subsets. In summary, our study suggests that IL-10 mediated immune regulation and depletion of IFN-γ+ EBNA1-specific CD4+ T cells are complementary mechanisms that contribute to impaired T cell cytotoxicity in eBL pathogenesis.
ABSTRACT
Longitudinal studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine-induced immune responses in patients with cancer are needed to optimize clinical care. In a prospective cohort study of 366 (291 vaccinated) patients, we measured antibody levels [anti-spike (IgG-(S-RBD) and anti-nucleocapsid immunoglobulin] at three time points. Antibody level trajectories and frequency of breakthrough infections were evaluated by tumor type and timing of treatment relative to vaccination. IgG-(S-RBD) at peak response (median = 42 days after dose 2) was higher (P = 0.002) and remained higher after 4 to 6 months (P = 0.003) in patients receiving mRNA-1273 compared with BNT162b2. Patients with solid tumors attained higher peak levels (P = 0.001) and sustained levels after 4 to 6 months (P < 0.001) compared with those with hematologic malignancies. B-cell targeted treatment reduced peak (P = 0.001) and sustained antibody responses (P = 0.003). Solid tumor patients receiving immune checkpoint inhibitors before vaccination had lower sustained antibody levels than those who received treatment after vaccination (P = 0.043). Two (0.69%) vaccinated and one (1.9%) unvaccinated patient had severe COVID-19 illness during follow-up. Our study shows variation in sustained antibody responses across cancer populations receiving various therapeutic modalities, with important implications for vaccine booster timing and patient selection. SIGNIFICANCE: Long-term studies of immunogenicity of SARS-CoV-2 vaccines in patients with cancer are needed to inform evidence-based guidelines for booster vaccinations and to tailor sequence and timing of vaccinations to elicit improved humoral responses.
Subject(s)
2019-nCoV Vaccine mRNA-1273 , BNT162 Vaccine , COVID-19/immunology , COVID-19/prevention & control , Immunity, Humoral , Neoplasms/immunology , SARS-CoV-2 , Vaccination/standards , Adult , Aged , Antibodies, Viral , COVID-19/epidemiology , Female , Humans , Immunization Programs , Immunoglobulin G , Longitudinal Studies , Male , Middle Aged , Neoplasms/complications , Neoplasms/pathology , Prospective Studies , Surveys and Questionnaires , Time Factors , Vaccination/methodsABSTRACT
Primary infection with Epstein-Barr virus (EBV) is associated with acute infectious mononucleosis, whereas persistent infection is associated with chronic diseases such as autoimmune diseases and various types of cancer. Indeed, approximately 2% of all new cancer cases occurring annually worldwide are EBV-associated. Currently, there is no licensed EBV prophylactic vaccine. Selection of appropriate viral protein subunits is critical for development of an effective vaccine. Although the major EBV surface glycoprotein gp350/220 (gp350) has been proposed as an important prophylactic vaccine target, attempts to develop a potent vaccine based on gp350 alone have shown limited success in the clinic. We provide data showing that five EBV glycoproteins (gp350, gB, gp42, gH, and gL) involved in viral entry and infection can successfully be incorporated on the surface of EBV-like particles (EBV-LPs). These EBV-LPs, when administered together with aluminum hydroxide and monophosphoryl lipid A as adjuvants to New Zealand white rabbits, elicited EBV glycoprotein-specific antibodies capable of neutralizing viral infection in vitro in both B cells and epithelial cells, better than soluble gp350 ectodomain. Our findings suggest that a pentavalent EBV-LP formulation might be an ideal candidate for development as a safe and immunogenic EBV vaccine.
ABSTRACT
Kaposi sarcoma-associated herpesvirus (KSHV) is an emerging pathogen and the causative agent of multiple cancers in immunocompromised patients. To date, there is no licensed prophylactic KSHV vaccine. In this study, we generated a novel subunit vaccine that incorporates four key KSHV envelope glycoproteins required for viral entry in diverse cell types (gpK8.1, gB, and gH/gL) into a single multivalent KSHV-like particle (KSHV-LP). Purified KSHV-LPs were similar in size, shape, and morphology to KSHV virions. Vaccination of rabbits with adjuvanted KSHV-LPs generated strong glycoprotein-specific antibody responses, and purified immunoglobulins from KSHV-LP-immunized rabbits neutralized KSHV infection in epithelial, endothelial, fibroblast, and B cell lines (60-90% at the highest concentration tested). These findings suggest that KSHV-LPs may be an ideal platform for developing a safe and effective prophylactic KSHV vaccine. We envision performing future studies in animal models that are susceptible to KSHV infection, to determine correlates of immune protection in vivo.
Subject(s)
Antibodies, Neutralizing/immunology , Herpesvirus 8, Human/immunology , Adjuvants, Immunologic , Animals , Electrophoresis, Polyacrylamide Gel , Herpesvirus 8, Human/pathogenicity , Microscopy, Electron, Transmission , Plasmids/genetics , Rabbits , Vaccination/methods , Viral Envelope Proteins/immunologyABSTRACT
Natural killer (NK) cells are critical for restricting viral infections and mediating tumor immunosurveillance. Epstein-Barr virus (EBV) and Plasmodium falciparum malaria are known risk factors for endemic Burkitt lymphoma (eBL), the most common childhood cancer in equatorial Africa. To date, the composition and function of NK cells have not been evaluated in eBL etiology or pathogenesis. Therefore, using multiparameter flow cytometry and in vitro killing assays, we compared NK cells from healthy children and children diagnosed with eBL in Kenya. We defined 5 subsets based on CD56 and CD16 expression, including CD56negCD16pos We found that licensed and terminally differentiated perforin-expressing CD56negCD16pos NK cells accumulated in eBL children, particularly in those with high EBV loads (45.2%) compared with healthy children without (6.07%) or with (13.5%) malaria exposure (P = .0007 and .002, respectively). This progressive shift in NK cell proportions was concomitant with fewer CD56dimCD16pos cells. Despite high MIP-1ß expression, CD56negCD16pos NK cells had diminished cytotoxicity, with lower expression of activation markers NKp46, NKp30, and CD160 and the absence of TNF-α. Of note, the accumulation of poorly cytotoxic CD56negCD16pos NK cells resolved in long-term eBL survivors. Our study demonstrates impaired NK cell-mediated immunosurveillance in eBL patients but with the potential to restore a protective NK cell repertoire after cancer treatment. Characterizing NK cell dysfunction during coinfections with malaria and EBV has important implications for designing immunotherapies to improve outcomes for children diagnosed with eBL.
Subject(s)
Burkitt Lymphoma/epidemiology , CD56 Antigen/metabolism , Killer Cells, Natural/metabolism , Cell Differentiation , Child , Child, Preschool , Humans , Kenya , Killer Cells, Natural/cytologyABSTRACT
Previous Epstein-Barr virus (EBV) prophylactic vaccines based on the major surface glycoprotein gp350/220 as an immunogen have failed to block viral infection in humans, suggesting a need to target other viral envelope glycoproteins. In this study, we reasoned that incorporating gH/gL or gB, critical glycoproteins for viral fusion and entry, on the surface of a virus-like particle (VLP) would be more immunogenic than gp350/220 for generating effective neutralizing antibodies to prevent viral infection of both epithelial and B cell lines. To boost the humoral response and trigger cell-mediated immunity, EBV nuclear antigen 1 (EBNA1) and latent membrane protein 2 (LMP2), intracellular latency proteins expressed in all EBV-infected cells, were also included as critical components of the polyvalent EBV VLP. gH/gL-EBNA1 and gB-LMP2 VLPs were efficiently produced in Chinese hamster ovary cells, an FDA-approved vehicle for mass-production of biologics. Immunization with gH/gL-EBNA1 and gB-LMP2 VLPs without adjuvant generated both high neutralizing antibody titers in vitro and EBV-specific T-cell responses in BALB/c mice. These data demonstrate that will be invaluable not only in preventing EBV infection, but importantly, in preventing and treating the 200,000 cases of EBV-associated cancers that occur globally every year.
Subject(s)
Antibodies, Neutralizing/blood , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Nuclear Antigens/immunology , Stomach Neoplasms/immunology , T-Lymphocytes/immunology , Viral Matrix Proteins/immunology , Animals , Antibodies, Neutralizing/immunology , CHO Cells , Cricetinae , Cricetulus , Epstein-Barr Virus Infections/virology , Female , Herpesvirus 4, Human/physiology , Humans , Immunity, Cellular , Immunization , Mice , Mice, Inbred BALB C , Stomach Neoplasms/prevention & control , Stomach Neoplasms/virology , Tumor Cells, CulturedABSTRACT
Overexpression of interleukin-6 (IL-6) and IL-10 in endemic Burkitt lymphoma (eBL) may facilitate tumorigenesis by providing a permissive cytokine milieu. Promoter polymorphisms influence interindividual differences in cytokine production. We hypothesized that children genetically predisposed for elevated cytokine levels may be more susceptible to eBL. Using case-control samples from western Kenya consisting of 117 eBL cases and 88 ethnically matched healthy controls, we tested for the association between eBL risk and IL-10 (rs1800896, rs1800871, and rs1800872) and IL-6 (rs1800795) promoter single nucleotide polymorphisms (SNPs) as well as IL-10 promoter haplotypes. In addition, the association between these variants and Epstein Barr Virus (EBV) load was examined. Results showed that selected IL-10 and IL-6 promoter SNPs and IL-10 promoter haplotypes were not associated with risk eBL or EBV levels in EBV-seropositive children. Findings from this study reveal that common variants within the IL-10 and IL-6 promoters do not independently increase eBL risk in this vulnerable population.