Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Microb Ecol ; 84(2): 613-626, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34580739

ABSTRACT

Rickettsiella species are bacterial symbionts that are present in a great variety of arthropod species, including ixodid ticks. However, little is known about their genetic diversity and distribution in Ixodes ricinus, as well as their relationship with other tick-associated bacteria. In this study, we investigated the occurrence and the genetic diversity of Rickettsiella spp. in I. ricinus throughout Europe and evaluated any preferential and antagonistic associations with Candidatus Midichloria mitochondrii and the pathogens Borrelia burgdorferi sensu lato and Borrelia miyamotoi. Rickettsiella spp. were detected in most I. ricinus populations investigated, encompassing a wide array of climate types and environments. The infection prevalence significantly differed between geographic locations and was significantly higher in adults than in immature life stages. Phylogenetic investigations and protein characterization disclosed four Rickettsiella clades (I-IV). Close phylogenetic relations were observed between Rickettsiella strains of I. ricinus and other arthropod species. Isolation patterns were detected for Clades II and IV, which were restricted to specific geographic areas. Lastly, although coinfections occurred, we did not detect significant associations between Rickettsiella spp. and the other tick-associated bacteria investigated. Our results suggest that Rickettsiella spp. are a genetically and biologically diverse facultative symbiont of I. ricinus and that their distribution among tick populations could be influenced by environmental components.


Subject(s)
Coxiellaceae , Ixodes , Animals , Europe , Genetic Variation , Ixodes/microbiology , Phylogeny
2.
Exp Appl Acarol ; 87(2-3): 235-251, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35840866

ABSTRACT

Ixodes ricinus ticks transmit Borrelia burgdorferi sensu lato (s.l.) as well as Borrelia miyamotoi. Larvae become infected when feeding on infected rodents, with horizontal transmission of B. burgdorferi and horizontal and vertical transmission of B. miyamotoi. We studied seasonal dynamics of infection rates of I. ricinus and their rodent hosts, and hence transmission risk of these two distinctly different Borrelia species. Rodents were live-trapped and inspected for ticks from May to November in 2013 and 2014 in a forest in The Netherlands. Trapped rodents were temporarily housed in the laboratory and detached ticks were collected. Borrelia infections were determined from the trapped rodents and collected ticks. Borrelia burgdorferi s.l. and B. miyamotoi were found in ticks as well as in rodents. Rodent density was higher in 2014, whereas tick burden as well as the Borrelia infection rates in rodents were higher in 2013. The density of B. miyamotoi-infected nymphs did not differ between the years. Tick burdens were higher on Apodemus sylvaticus than on Myodes glareolus, and higher on males than on females. Borrelia-infection rate of rodents varied strongly seasonally, peaking in summer. As the larval tick burden also peaked in summer, the generation of infected nymphs was highest in summer. We conclude that the heterogeneity of environmental and host-specific factors affects the seasonal transmission of Borrelia spp., and that these effects act more strongly on horizontally transmitted B. burgdorferi spp. than on the vertically transmitted B. miyamotoi.


Subject(s)
Borrelia Infections , Borrelia burgdorferi , Borrelia , Ixodes , Lyme Disease , Rodent Diseases , Animals , Ecosystem , Female , Forests , Male , Murinae , Nymph , Seasons
3.
Microb Ecol ; 82(3): 602-612, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33547531

ABSTRACT

Anaplasma phagocytophilum is an important tick-borne zoonotic agent of human granulocytic anaplasmosis (HGA). In Europe, the Ixodes ticks are the main vector responsible for A. phagocytophilum transmission. A wide range of wild animals is involved in the circulation of this pathogen in the environment. Changes in populations of vertebrates living in different ecosystems impact the ecology of ticks and the epidemiology of tick-borne diseases. In this study, we investigated four species, Western European hedgehog (Erinaceus europaeus), northern white-breasted hedgehog (Erinaceus roumanicus), Eurasian red squirrel (Sciurus vulgaris), and the common blackbird (Turdus merula), to describe their role in the circulation of A. phagocytophilum in urban and periurban ecosystems. Ten different tissues were collected from cadavers of the four species, and blood and ear/skin samples from live blackbirds and hedgehogs. Using qPCR, we detected a high rate of A. phagocytophilum: Western European hedgehogs (96.4%), northern white-breasted hedgehogs (92.9%), Eurasian red squirrels (60%), and common blackbirds (33.8%). In the groEL gene, we found nine genotypes belonging to three ecotypes; seven of the genotypes are associated with HGA symptoms. Our findings underline the role of peridomestic animals in the ecology of A. phagocytophilum and indicate that cadavers are an important source of material for monitoring zoonotic pathogens. Concerning the high prevalence rate, all investigated species play an important role in the circulation of A. phagocytophilum in municipal areas; however, hedgehogs present the greatest anaplasmosis risk for humans. Common blackbirds and squirrels carry different A. phagocytophilum variants some of which are responsible for HGA.


Subject(s)
Anaplasma phagocytophilum , Ixodes , Tick-Borne Diseases , Anaplasma phagocytophilum/genetics , Animals , Ecosystem , Hedgehogs , Humans
4.
Proc Biol Sci ; 284(1859)2017 Jul 26.
Article in English | MEDLINE | ID: mdl-28724731

ABSTRACT

Predators and competitors of vertebrates can in theory reduce the density of infected nymphs (DIN)-an often-used measure of tick-borne disease risk-by lowering the density of reservoir-competent hosts and/or the tick burden on reservoir-competent hosts. We investigated this possible indirect effect of predators by comparing data from 20 forest plots across the Netherlands that varied in predator abundance. In each plot, we measured the density of questing Ixodes ricinus nymphs (DON), DIN for three pathogens, rodent density, the tick burden on rodents and the activity of mammalian predators. We analysed whether rodent density and tick burden on rodents were correlated with predator activity, and how rodent density and tick burden predicted DON and DIN for the three pathogens. We found that larval burden on two rodent species decreased with activity of two predator species, while DON and DIN for all three pathogens increased with larval burden on rodents, as predicted. Path analyses supported an indirect negative correlation of activity of both predator species with DON and DIN. Our results suggest that predators can indeed lower the number of ticks feeding on reservoir-competent hosts, which implies that changes in predator abundance may have cascading effects on tick-borne disease risk.


Subject(s)
Ixodes , Predatory Behavior , Rodentia/parasitology , Animals , Forests , Netherlands , Nymph , Population Density , Tick-Borne Diseases
5.
Environ Microbiol ; 18(3): 988-96, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26627444

ABSTRACT

We investigated the transmission dynamics of a community of tick-borne pathogenic bacteria in a common European songbird (Parus major). Tick-naïve birds were infested with three successive batches (spaced 5 days apart) of field-collected Ixodes ricinus nymphs, carrying the following tick-borne bacteria: Rickettsia helvetica (16.9%), Borrelia garinii (1.9%), Borrelia miyamotoi (1.6%), Anaplasma phagocytophilum (1.2%) and Candidatus Neoehrlichia mikurensis (0.4%). Fed ticks were screened for the pathogens after moulting to the next developmental phase. We found evidence for early transmission (within 2.75 days after exposure) of R. helvetica and B. garinii, and to a lesser extent of A. phagocytophilum based on the increased infection rates of ticks during the first infestation. The proportion of ticks infected with R. helvetica remained constant over the three infestations. In contrast, the infection rate of B. garinii in the ticks increased over the three infestations, indicating a more gradual development of host tissue infection. No interactions were found among the different bacterium species during transmission. Birds did not transmit or amplify the other bacterial species. We show that individual birds can transmit several pathogenic bacterium species at the same time using different mechanisms, and that the transmission facilitation by birds increases the frequency of co-infections in ticks.


Subject(s)
Bird Diseases/transmission , Ixodes/microbiology , Songbirds/microbiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/transmission , Anaplasma/growth & development , Animals , Bird Diseases/microbiology , Borrelia burgdorferi Group/growth & development , Coinfection , Rickettsia/growth & development
6.
Environ Microbiol ; 16(9): 2859-68, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24118930

ABSTRACT

We investigated to what extent a European songbird (Parus major) selectively transmits and amplifies Borrelia burgdorferi s.l. bacteria. Borrelia-naïve birds were recurrently exposed to Ixodes ricinus nymphs carrying a community of more than 34 5S-23S genotypes belonging to five genospecies (Borrelia garinii, Borrelia valaisiana, Borrelia afzelii, B. burgdorferi s.s. and Borrelia spielmanii). Fed ticks were screened for Borrelia after moulting. We found evidence for co-feeding transmission of avian and possibly also mammalian genotypes. Throughout the course of infestations, the infection rate of B. garinii and B. valaisiana increased, indicating successful amplification and transmission, while the infection rate for B. afzelii, B. burgdorferi s.s and B. spielmanii tended to decrease. Within the B. garinii and B. valaisiana genotype communities, certain genotypes were transmitted more than others. Moreover, birds were able to host mixed infections of B. garinii and B. valaisiana, as well as mixed infections of genotypes of the same genospecies. We experimentally show that resident songbirds transmit a broad range of Borrelia genotypes, but selectively amplify certain genotypes, and that one bird can transmit simultaneously several genotypes. Our results highlight the need to explicitly consider the association between genotypes and hosts, which may offer opportunities to point out which hosts are most responsible for the Borrelia presence in questing ticks.


Subject(s)
Borrelia/classification , Ixodes/microbiology , Lyme Disease/transmission , Songbirds/microbiology , Animals , Borrelia/genetics , Genotype
7.
Environ Microbiol ; 16(4): 1081-9, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24237635

ABSTRACT

Our study tested whether two European bird-specialized ticks, Ixodes arboricola and I. frontalis, can act as vectors in the transmission cycles of Borrelia burgdorferi s.l. The ticks have contrasting ecologies but share songbird hosts (such as the great tit, Parus major) with the generalist I. ricinus which may therefore act as a bridging vector. In the first phase of the experiment, we obtained Borrelia-infected ornithophilic nymphs by exposing larvae to great tits that had previously been exposed to I. ricinus nymphs carrying a community of genospecies (Borrelia garinii, valaisiana, afzelii, burgdorferi s.s., spielmanii). Skin samples showed that birds selectively amplified B. garinii and B. valaisiana. The spirochetes were transmitted to the ornithophilic ticks and survived moulting, leading to infection rates of 16% and 27% in nymphs of I. arboricola and I. frontalis respectively. In the second phase, pathogen-free great tits were exposed to the Borrelia-infected ornithophilic nymphs. None of these ticks were able to infect the birds, as indicated by the tissue samples. Analysis of xenodiagnostic I. ricinus larvae found no evidence for co-feeding or systemic transmission of B. burgdorferi s.l. These outcomes do not support the occurrence of enzootic cycles of Borrelia burgdorferi s.l. involving songbirds and their specialized ornithophilic ticks.


Subject(s)
Borrelia burgdorferi/physiology , Host-Parasite Interactions , Ixodes/physiology , Songbirds/parasitology , Animals , Female , Songbirds/physiology
8.
Sci Total Environ ; 919: 170749, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340833

ABSTRACT

Studies on density and pathogen prevalence of Ixodes ricinus indicate that vegetation and local host community drive much of their variation between green spaces. Contrarily, micro-geographic variation is understudied, although its understanding could reduce disease risk. We studied the density of infectious nymphal Ixodes sp. ("DIN", proxy for disease hazard), density of questing nymphs ("DON") and nymphal infection prevalence ("NIP") near recreational forest infrastructure. Drag sampling within forest stands and at adjacent benches and trails was combined with vegetation surveys, camera trapping hosts and pathogen screening of ticks. We analysed Borrelia burgdorferi s.l. and its genospecies, with complementary analyses on Rickettsia sp., Anaplasma phagocytophilum, Neoehrlichia mikurensis and Borrelia miyamotoi. DIN was highest in forest interior and at trails enclosed by forest. Lower disease hazard was observed at benches and trails at forest edges. This infrastructure effect can be attributed to variation in vegetation characteristics and the habitat use of tick hosts, specifically roe deer, rodents and songbirds. DON is the main driver of DIN at micro-geographic scale and negatively affected by infrastructure and forest edges. A positive association with vegetation cover in understorey and canopy was observed, as were positive trends for local rodent and songbird abundance. NIP of different pathogens was affected by different drivers. Lower B. burgdorferi s.l. prevalence in the interior of forest stands, driven by its most prevalent genospecies B. afzelii, points towards higher density of uninfected hosts there. B. afzelii was positively associated with understorey containing tall species and with high canopy cover, whereas local bird community composition predicts B. garinii prevalence. A positive effect of songbird abundance and a negative effect of pigeons were observed. Our findings support amplification and inhibition mechanisms within forest stands and highlight that the effect of established drivers of DIN may differ based on the considered spatial scale.


Subject(s)
Borrelia burgdorferi , Deer , Ixodes , Tick-Borne Diseases , Animals , Forests , Ecosystem , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/veterinary , Rodentia
9.
Parasit Vectors ; 17(1): 380, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39238018

ABSTRACT

BACKGROUND: Ticks carry a variety of microorganisms, some of which are pathogenic to humans. The human risk of tick-borne diseases depends on, among others, the prevalence of pathogens in ticks biting humans. To follow-up on this prevalence over time, a Belgian study from 2017 was repeated in 2021. METHODS: During the tick season 2021, citizens were invited to have ticks removed from their skin, send them and fill in a short questionnaire on an existing citizen science platform for the notification of tick bites (TekenNet). Ticks were morphologically identified to species and life stage level and screened using multiplex qPCR targeting, among others, Borrelia burgdorferi (sensu lato), Anaplasma phagocytophilum, Borrelia miyamotoi, Neoehrlichia mikurensis, Babesia spp., Rickettsia helvetica and tick-borne encephalitis virus (TBEV). The same methodology as in 2017 was used. RESULTS: In 2021, the same tick species as in 2017 were identified in similar proportions; of 1094 ticks, 98.7% were Ixodes ricinus, 0.8% Ixodes hexagonus and 0.5% Dermacentor reticulatus. A total of 928 nymphs and adults could be screened for the presence of pathogens. Borrelia burgdorferi (s.l.) was detected in 9.9% (95% CI 8.2-12.0%), which is significantly lower than the prevalence of 13.9% (95% CI 12.2-15.7%) in 2017 (P = 0.004). The prevalences of A. phagocytophilum (4.7%; 95% CI 3.5-6.3%) and R. helvetica (13.3%; 95% CI 11.2-15.6%) in 2021 were significantly higher compared to 2017 (1.8%; 95% CI 1.3-2.7% and 6.8%; 95% CI 5.6-8.2% respectively) (P < 0.001 for both). For the other pathogens tested, no statistical differences compared to 2017 were found, with prevalences ranging between 1.5 and 2.9% in 2021. Rickettsia raoultii was again found in D. reticulatus ticks (n = 3/5 in 2021). Similar to 2017, no TBEV was detected in the ticks. Co-infections were found in 5.1% of ticks. When combining co-infection occurrence in 2017 and 2021, a positive correlation was observed between B. burgdorferi (s.l.) and N. mikurensis and B. burgdorferi (s.l.) and B. miyamotoi (P < 0.001 for both). CONCLUSIONS: Although the 2021 prevalences fell within expectations, differences were found compared to 2017. Further research to understand the explanations behind these differences is needed.


Subject(s)
Anaplasma phagocytophilum , Borrelia burgdorferi , Borrelia , Encephalitis Viruses, Tick-Borne , Ixodes , Animals , Belgium/epidemiology , Humans , Prevalence , Encephalitis Viruses, Tick-Borne/isolation & purification , Encephalitis Viruses, Tick-Borne/genetics , Borrelia/isolation & purification , Borrelia/genetics , Borrelia/classification , Ixodes/microbiology , Ixodes/virology , Borrelia burgdorferi/isolation & purification , Borrelia burgdorferi/genetics , Anaplasma phagocytophilum/isolation & purification , Anaplasma phagocytophilum/genetics , Babesia/isolation & purification , Babesia/genetics , Rickettsia/isolation & purification , Rickettsia/genetics , Rickettsia/classification , Female , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/virology , Male , Dermacentor/microbiology , Dermacentor/virology , Nymph/microbiology , Nymph/virology , Ticks/microbiology , Ticks/virology , Tick Bites/epidemiology
10.
Vector Borne Zoonotic Dis ; 24(8): 478-488, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38853708

ABSTRACT

Background: Urban areas are unique ecosystems with stark differences in species abundance and composition compared with natural ecosystems. These differences can affect pathogen transmission dynamics, thereby altering zoonotic pathogen prevalence and diversity. In this study, we screened small mammals from natural and urban areas in the Netherlands for up to 19 zoonotic pathogens, including viruses, bacteria, and protozoan parasites. Materials and Methods: In total, 578 small mammals were captured, including wood mice (Apodemus sylvaticus), bank voles (Myodes glareolus), yellow-necked mice (Apodemus flavicollis), house mice (Mus musculus), common voles (Microtus arvalis), and greater white-toothed shrews (Crocidura russula). We detected a wide variety of zoonotic pathogens in small mammals from both urban and natural areas. For a subset of these pathogens, in wood mice and bank voles, we then tested whether pathogen prevalence and diversity were associated with habitat type (i.e., natural versus urban), degree of greenness, and various host characteristics. Results: The prevalence of tick-borne zoonotic pathogens (Borrelia spp. and Neoehrlichia mikurensis) was significantly higher in wood mice from natural areas. In contrast, the prevalence of Bartonella spp. was higher in wood mice from urban areas, but this difference was not statistically significant. Pathogen diversity was higher in bank voles from natural habitats and increased with body weight for both rodent species, although this relationship depended on sex for bank voles. In addition, we detected methicillin-resistant Staphylococcus aureus, extended-spectrum beta-lactamase/AmpC-producing Escherichia coli, and lymphocytic choriomeningitis virus for the first time in rodents in the Netherlands. Discussion: The differences between natural and urban areas are likely related to differences in the abundance and diversity of arthropod vectors and vertebrate community composition. With increasing environmental encroachment and changes in urban land use (e.g., urban greening), it is important to better understand transmission dynamics of zoonotic pathogens in urban environments to reduce potential disease risks for public health.


Subject(s)
Tick-Borne Diseases , Zoonoses , Animals , Tick-Borne Diseases/epidemiology , Tick-Borne Diseases/microbiology , Tick-Borne Diseases/veterinary , Netherlands/epidemiology , Ecosystem , Rodentia , Rodent Diseases/epidemiology , Rodent Diseases/parasitology , Prevalence , Arvicolinae , Shrews/parasitology , Ticks/microbiology , Mice , Cities
11.
Environ Microbiol ; 15(2): 663-73, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23279105

ABSTRACT

We examined the Borrelia burgdorferi sensu lato circulation in a tick community consisting of three species (Ixodes ricinus, I. frontalis, I. arboricola) with contrasting ecologies, but sharing two European songbird hosts (Parus major and Cyanistes caeruleus). Parus major had the highest infestation rates, primarily due to larger numbers of I. ricinus, and probably because of their greater low-level foraging. The prevalence of Borrelia in feeding ticks did not significantly differ between the two bird species; however, P. major in particular hosted large numbers of Borrelia-infected I. frontalis and I. ricinus larvae, suggesting that the species facilitates Borrelia transmission. The low but significant numbers of Borrelia in questing I. arboricola ticks also provides the first field data to suggest that it is competent in maintaining Borrelia. Aside from Borrelia garinii, a high number of less dominant genospecies was observed, including several mammalian genospecies and the first record of Borrelia turdi for North-Western Europe. Borrelia burgdorferi sensu lato IGS genotypes were shared between I. arboricola and I. ricinus and between I. frontalis and I. ricinus, but not between I. arboricola and I. frontalis. This suggests that the Borrelia spp. transmission cycles can be maintained by bird-specific ticks, and bridged by I. ricinus to other hosts outside bird-tick cycles.


Subject(s)
Bird Diseases/transmission , Borrelia burgdorferi/physiology , Ixodes/microbiology , Lyme Disease/veterinary , Songbirds/microbiology , Tick Infestations/veterinary , Animals , Arachnid Vectors/microbiology , Belgium/epidemiology , Bird Diseases/epidemiology , Bird Diseases/microbiology , Borrelia/physiology , Borrelia burgdorferi/genetics , Female , Genotype , Lyme Disease/microbiology , Lyme Disease/transmission , Phylogeny , Prevalence , Tick Infestations/epidemiology , Tick Infestations/microbiology
12.
Parasit Vectors ; 16(1): 443, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38017525

ABSTRACT

BACKGROUND: Ixodes ricinus ticks are infected with a large diversity of vertically and horizontally transmitted symbionts. While horizontally transmitted symbionts rely on a vertebrate host for their transmission, vertically transmitted symbionts rely more on the survival of their invertebrate host for transmission. We therefore hypothesized horizontally transmitted symbionts to be associated with increased tick activity to increase host contact rate and vertically transmitted symbionts to be associated with higher tick weight and lipid fraction to promote tick survival. METHODS: We used a behavioural assay to record the questing activity of I. ricinus ticks. In addition, we measured weight and lipid fraction and determined the presence of ten symbiont species in these ticks using qPCR, of which six were vertically transmitted and four horizontally transmitted. RESULTS: Vertically transmitted symbionts (e.g. Midichloria mitochondrii) were associated with an increase in tick weight, whereas horizontally transmitted symbionts (e.g. Borrelia burgdorferi sensu lato) were often associated with lower weight and lipid fraction of ticks. Moreover, horizontally transmitted symbionts (e.g. B. burgdorferi s.l.) were associated with increased tick activity, which may benefit pathogen transmission and increases tick-borne disease hazard. CONCLUSIONS: Our study shows that horizontally and vertically transmitted symbionts differentially influence the behaviour and physiology of I. ricinus and warrants future research to study the underlying mechanisms and effects on transmission dynamics of tick-borne pathogens.


Subject(s)
Borrelia burgdorferi , Ixodes , Tick-Borne Diseases , Animals , Ixodes/physiology , Lipids
13.
Sci Total Environ ; 896: 165069, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37392874

ABSTRACT

Urban greening has benefits for both human and environmental health. However, urban greening might also have negative effects as the abundance of wild rats, which can host and spread a great diversity of zoonotic pathogens, increases with urban greenness. Studies on the effect of urban greening on rat-borne zoonotic pathogens are currently unavailable. Therefore, we investigated how urban greenness is associated with rat-borne zoonotic pathogen prevalence and diversity, and translated this to human disease hazard. We screened 412 wild rats (Rattus norvegicus and Rattus rattus) from three cities in the Netherlands for 18 different zoonotic pathogens: Bartonella spp., Leptospira spp., Borrelia spp., Rickettsia spp., Anaplasma phagocytophilum, Neoehrlichia mikurensis, Spiroplasma spp., Streptobacillus moniliformis, Coxiella burnetii, Salmonella spp., methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase (ESBL)/AmpC-producing Escherichia coli, rat hepatitis E virus (ratHEV), Seoul orthohantavirus, Cowpox virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Toxoplasma gondii and Babesia spp. We modelled the relationships between pathogen prevalence and diversity and urban greenness. We detected 13 different zoonotic pathogens. Rats from greener urban areas had a significantly higher prevalence of Bartonella spp. and Borrelia spp., and a significantly lower prevalence of ESBL/AmpC-producing E. coli and ratHEV. Rat age was positively correlated with pathogen diversity while greenness was not related to pathogen diversity. Additionally, Bartonella spp. occurrence was positively correlated with that of Leptospira spp., Borrelia spp. and Rickettsia spp., and Borrelia spp. occurrence was also positively correlated with that of Rickettsia spp. Our results show an increased rat-borne zoonotic disease hazard in greener urban areas, which for most pathogens was driven by the increase in rat abundance rather than pathogen prevalence. This highlights the importance of keeping rat densities low and investigating the effects of urban greening on the exposure to zoonotic pathogens in order to make informed decisions and to take appropriate countermeasures preventing zoonotic diseases.


Subject(s)
COVID-19 , Methicillin-Resistant Staphylococcus aureus , Animals , Rats , Humans , Escherichia coli , SARS-CoV-2 , Zoonoses/epidemiology
14.
Int J Parasitol ; 53(2): 91-101, 2023 02.
Article in English | MEDLINE | ID: mdl-36549441

ABSTRACT

The ornate dog tick (Dermacentor reticulatus) shows a recently expanding geographic distribution. Knowledge on its intraspecific variability, population structure, rate of genetic diversity and divergence, including its evolution and geographic distribution, is crucial to understand its dispersal capacity. All such information would help to evaluate the potential risk of future spread of associated pathogens of medical and veterinary concern. A set of 865 D. reticulatus ticks was collected from 65 localities across 21 countries, from Portugal in the west to Kazakhstan and southern Russia in the east. Cluster analyses of 16 microsatellite loci were combined with nuclear (ITS2, 18S) and mitochondrial (12S, 16S, COI) sequence data to uncover the ticks' population structures and geographical patterns. Approximate Bayesian computation was applied to model evolutionary relationships among the found clusters. Low variability and a weak phylogenetic signal showing an east-west cline were detected both for mitochondrial and nuclear sequence markers. Microsatellite analyses revealed three genetic clusters, where the eastern and western cluster gradient was supplemented by a third, northern cluster. Alternative scenarios could explain such a tripartite population structure by independent formation of clusters in separate refugia, limited gene flow connected with isolation by distance causing a "bipolar pattern", and the northern cluster deriving from admixture between the eastern and western populations. The best supported demographic scenario of this tick species indicates that the northern cluster derived from admixture between the eastern and western populations 441 (median) to 224 (mode) generations ago, suggesting a possible link with the end of the Little Ice Age in Europe.


Subject(s)
Dermacentor , Rhipicephalus sanguineus , Dogs , Animals , Dermacentor/genetics , Phylogeny , Bayes Theorem , Refugium
15.
Microbiome ; 10(1): 120, 2022 08 04.
Article in English | MEDLINE | ID: mdl-35927748

ABSTRACT

BACKGROUND: Ixodes ricinus ticks vector pathogens that cause serious health concerns. Like in other arthropods, the microbiome may affect the tick's biology, with consequences for pathogen transmission. Here, we explored the bacterial communities of I. ricinus across its developmental stages and six geographic locations by the 16S rRNA amplicon sequencing, combined with quantification of the bacterial load. RESULTS: A wide range of bacterial loads was found. Accurate quantification of low microbial biomass samples permitted comparisons to high biomass samples, despite the presence of contaminating DNA. The bacterial communities of ticks were associated with geographical location rather than life stage, and differences in Rickettsia abundance determined this association. Subsequently, we explored the geographical distribution of four vertically transmitted symbionts identified in the microbiome analysis. For that, we screened 16,555 nymphs from 19 forest sites for R. helvetica, Rickettsiella spp., Midichloria mitochondrii, and Spiroplasma ixodetis. Also, the infection rates and distributions of these symbionts were compared to the horizontally transmitted pathogens Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum, and Neoehrlichia mikurensis. The infection rates of all vertically transmitted symbionts differed between the study sites, and none of the symbionts was present in all tested ticks suggesting a facultative association with I. ricinus. The proportions in which symbionts occurred in populations of I. ricinus were highly variable, but geographically close study sites expressed similar proportions. These patterns were in contrast to what we observed for horizontally transmitted pathogens. Lastly, nearly 12% of tested nymphs were free of any targeted microorganisms, which is in line with the microbiome analyses. CONCLUSIONS: Our results show that the microbiome of I. ricinus is highly variable, but changes gradually and ticks originating from geographically close forest sites express similar bacterial communities. This suggests that geography-related factors affect the infection rates of vertically transmitted symbionts in I. ricinus. Since some symbionts, such as R. helvetica can cause disease in humans, we propose that public health investigations consider geographical differences in its infection rates.


Subject(s)
Anaplasma phagocytophilum , Ixodes , Rickettsia , Anaplasma phagocytophilum/genetics , Animals , Humans , Ixodes/genetics , Ixodes/microbiology , Nymph/microbiology , RNA, Ribosomal, 16S/genetics , Rickettsia/genetics
16.
Parasit Vectors ; 15(1): 93, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35303944

ABSTRACT

BACKGROUND: The impact of infections with tick-borne pathogens (TBPs) other than Borrelia burgdorferi (s.l.) and tick-borne encephalitis virus (TBEV) on public health in Europe remains unclear. Our goal is to evaluate whether the presence of these TBPs in ticks can be associated with self-reported health complaints. METHODS: We enrolled individuals who were bitten by I. ricinus between 2012 and 2015 and collected their relevant demographic and clinical information using a self-administered online questionnaire. A total of 4163 I. ricinus ticks sent by the participants were subject to molecular analyses for detection of specific TBPs. Associations between the presence of TBPs in ticks and self-reported complaints and symptoms were evaluated by means of a stepwise approach using a generalized linear model (GLM). RESULTS: Of 17 self-reported complaints and symptoms significant in the univariate analyses, 3 had a highly significant association (P < 0.01) with at least one TBP in the multivariate analysis. Self-reported Lyme borreliosis was significantly associated (P < 0.001) with B. burgdorferi (s.l.) infection. Facial paralysis was associated (P < 0.01) with infection with B. miyamotoi, N. mikurensis and R. helvetica. Finally, a significant association (P < 0.001) was found between nocturnal sweating and A. phagocytophilum. CONCLUSIONS: We found associations between the presence of TBPs in ticks feeding on humans and self-reported symptoms. Due to the subjective nature of such reports and the fact that infection was determined in the ticks and not in the patient samples, further prospective studies utilizing diagnostic modalities should be performed before any clinical outcome can be causally linked to infection with TBPs.


Subject(s)
Encephalitis Viruses, Tick-Borne , Ixodes , Lyme Disease , Animals , Humans , Lyme Disease/epidemiology , Prospective Studies , Self Report
17.
Parasit Vectors ; 15(1): 380, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36271430

ABSTRACT

BACKGROUND: Microbial communities can affect disease risk by interfering with the transmission or maintenance of pathogens in blood-feeding arthropods. Here, we investigated whether bacterial communities vary between Ixodes ricinus nymphs which were or were not infected with horizontally transmitted human pathogens. METHODS: Ticks from eight forest sites were tested for the presence of Borrelia burgdorferi sensu lato, Babesia spp., Anaplasma phagocytophilum, and Neoehrlichia mikurensis by quantitative polymerase chain reaction (qPCR), and their microbiomes were determined by 16S rRNA amplicon sequencing. Tick bacterial communities clustered poorly by pathogen infection status but better by geography. As a second approach, we analysed variation in tick microorganism community structure (in terms of species co-infection) across space using hierarchical modelling of species communities. For that, we analysed almost 14,000 nymphs, which were tested for the presence of horizontally transmitted pathogens B. burgdorferi s.l., A. phagocytophilum, and N. mikurensis, and the vertically transmitted tick symbionts Rickettsia helvetica, Rickettsiella spp., Spiroplasma ixodetis, and Candidatus Midichloria mitochondrii. RESULTS: With the exception of Rickettsiella spp., all microorganisms had either significant negative (R. helvetica and A. phagocytophilum) or positive (S. ixodetis, N. mikurensis, and B. burgdorferi s.l.) associations with M. mitochondrii. Two tick symbionts, R. helvetica and S. ixodetis, were negatively associated with each other. As expected, both B. burgdorferi s.l. and N. mikurensis had a significant positive association with each other and a negative association with A. phagocytophilum. Although these few specific associations do not appear to have a large effect on the entire microbiome composition, they can still be relevant for tick-borne pathogen dynamics. CONCLUSIONS: Based on our results, we propose that M. mitochondrii alters the propensity of ticks to acquire or maintain horizontally acquired pathogens. The underlying mechanisms for some of these remarkable interactions are discussed herein and merit further investigation. Positive and negative associations between and within horizontally and vertically transmitted symbionts.


Subject(s)
Anaplasma phagocytophilum , Anaplasmataceae , Borrelia burgdorferi , Ixodes , Rickettsia , Animals , Humans , RNA, Ribosomal, 16S/genetics , Ixodes/microbiology , Rickettsia/genetics , Anaplasma phagocytophilum/genetics , Borrelia burgdorferi/genetics , Anaplasmataceae/genetics , Nymph/microbiology
18.
Ticks Tick Borne Dis ; 13(4): 101965, 2022 07.
Article in English | MEDLINE | ID: mdl-35597188

ABSTRACT

Human granulocytic anaplasmosis and tick-borne fever, affecting livestock, are diseases caused by an infection with the bacterium Anaplasma phagocytophilum. Its transmission dynamics between vertebrate hosts and ticks remain largely unknown and the potential impact on public health in the United Kingdom is unclear. This study aimed to assess the distribution and estimate the prevalence of A. phagocytophilum in questing Ixodes ricinus at recreational locations across England and Wales over six years. An additional objective was to investigate possible associations between prevalence, habitat and presence of ruminant hosts. Ixodes ricinus ticks were collected each spring at 20 recreational locations across England and Wales between 2014 and 2019. Nymphs were tested for infection with A. phagocytophilum by detection of bacterial genome in DNA extracts, targeting the msp2 gene locus. Positive samples were further investigated for the presence of different ecotypes based on the GroEL region. Of 3,919 nymphs tested, the mean infection prevalence was 3.6% [95%CI: 3.1-4.3] and ranged from 0 to 20.4%. Northern England had a higher overall prevalence (4.7% [95%CI: 3.4-6.4]) compared to Southern England (1.8% [95%CI: 1.3-2.5]) and the presence of sheep was associated with higher A. phagocytophilum prevalence (8.4% [95%CI: 6.9-10.1] vs 1.2% [95%CI: 0.8-1.7] when absent). There was also a negative correlation with the prevalence of Borrelia burgdorferi s.l. (causing Lyme borreliosis). When investigating the diversity of A. phagocytophilum, ecotype I accounted for 86.8% of samples and ecotype II for 13.2%. Our study presents an overview of A. phagocytophilum prevalence in questing I. ricinus in recreational areas across England and Wales and discusses the potential public and veterinary health relevance.


Subject(s)
Anaplasma phagocytophilum , Borrelia burgdorferi , Ixodes , Anaplasma phagocytophilum/genetics , Animals , Borrelia burgdorferi/genetics , Ixodes/microbiology , Nymph , Prevalence , Sheep , Wales/epidemiology
19.
Parasit Vectors ; 15(1): 76, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35248157

ABSTRACT

BACKGROUND: The main objective of this study was to determine the prevalence of nine vector-borne pathogens or pathogen genera in roe deer (Capreolus capreolus) in the Netherlands, and to identify which host variables predict vector-borne pathogen presence in roe deer. The host variables examined were the four host factors 'age category', 'sex', 'nutritional condition' and 'health status', as well as 'roe deer density'. METHODS: From December 2009 to September 2010, blood samples of 461 roe deer were collected and analysed by polymerase chain reaction (PCR) for the presence of genetic material from Anaplasma phagocytophilum, Bartonella spp., Babesia spp., Borrelia burgdorferi sensu lato (s.l.), Borrelia miyamotoi, Neoehrlichia mikurensis, Rickettsia spp., and epizootic haemorrhagic disease virus (EHDV), and by commercial enzyme-linked immunosorbent assay (ELISA) for antibodies against bluetongue virus (BTV). The possible associations of host factors and density with pathogen prevalence and co-infection, and in the case of A. phagocytophilum with bacterial load, were assessed using generalized linear modelling. RESULTS AND CONCLUSION: Analysis revealed the following prevalence in roe deer: A. phagocytophilum 77.9%, Bartonella spp. 77.7%, Babesia spp. 17.4%, Rickettsia spp. 3.3%, B. burgdorferi sensu lato 0.2%. Various co-infections were found, of which A. phagocytophilum and Bartonella spp. (49.7% of infected roe deer) and A. phagocytophilum, Bartonella spp. and Babesia spp. (12.2% of infected roe deer) were the most common. Anaplasma phagocytophilum, Babesia spp., and co-infection prevalence were significantly higher in calves than in adult roe deer, whereas the prevalence of Bartonella spp. was lower in roe deer in good nutritional condition than in deer in poor nutritional condition. Local roe deer density was not associated with pathogen presence. The high prevalence of A. phagocytophilum, Bartonella spp., and Babesia spp. is evidence for the role of roe deer as reservoirs for these pathogens. Additionally, the results suggest a supportive role of roe deer in the life-cycle of Rickettsia spp. in the Netherlands.


Subject(s)
Anaplasma phagocytophilum , Babesia , Deer , Ixodes , Rickettsia , Anaplasma phagocytophilum/genetics , Animals , Babesia/genetics , Cattle , Deer/microbiology , Ixodes/microbiology , Prevalence
20.
Transbound Emerg Dis ; 69(6): 3881-3895, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36404584

ABSTRACT

Wild rats can host various zoonotic pathogens. Detection of these pathogens is commonly performed using molecular techniques targeting one or a few specific pathogens. However, this specific way of surveillance could lead to (emerging) zoonotic pathogens staying unnoticed. This problem may be overcome by using broader microbiome-profiling techniques, which enable broad screening of a sample's bacterial or viral composition. In this study, we investigated if 16S rRNA gene amplicon sequencing would be a suitable tool for the detection of zoonotic bacteria in wild rats. Moreover, we used virome-enriched (VirCapSeq) sequencing to detect zoonotic viruses. DNA from kidney samples of 147 wild brown rats (Rattus norvegicus) and 42 black rats (Rattus rattus) was used for 16S rRNA gene amplicon sequencing of the V3-V4 hypervariable region. Blocking primers were developed to reduce the amplification of rat host DNA. The kidney bacterial composition was studied using alpha- and beta-diversity metrics and statistically assessed using PERMANOVA and SIMPER analyses. From the sequencing data, 14 potentially zoonotic bacterial genera were identified from which the presence of zoonotic Leptospira spp. and Bartonella tribocorum was confirmed by (q)PCR or Sanger sequencing. In addition, more than 65% of all samples were dominated (>50% reads) by one of three bacterial taxa: Streptococcus (n = 59), Mycoplasma (n = 39) and Leptospira (n = 25). These taxa also showed the highest contribution to the observed differences in beta diversity. VirCapSeq sequencing in rat liver samples detected the potentially zoonotic rat hepatitis E virus in three rats. Although 16S rRNA gene amplicon sequencing was limited in its capacity for species level identifications and can be more difficult to interpret due to the influence of contaminating sequences in these low microbial biomass samples, we believe it has potential to be a suitable pre-screening method in the future to get a better overview of potentially zoonotic bacteria that are circulating in wildlife.


Subject(s)
Bartonella Infections , Microbiota , Rodent Diseases , Animals , Rats , RNA, Ribosomal, 16S/genetics , Animals, Wild , Bacteria/genetics , Bartonella Infections/microbiology , Bartonella Infections/veterinary , Microbiota/genetics , Rodent Diseases/epidemiology , Rodent Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL