Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Angew Chem Int Ed Engl ; 60(34): 18660-18665, 2021 08 16.
Article in English | MEDLINE | ID: mdl-33856106

ABSTRACT

A key aim of biocatalysis is to mimic the ability of eukaryotic cells to carry out multistep cascades in a controlled and selective way. As biocatalytic cascades get more complex, reactions become unattainable under typical batch conditions. Here a number of continuous flow systems were used to overcome batch incompatibility, thus allowing for successful biocatalytic cascades. As proof-of-principle, reactive carbonyl intermediates were generated in situ using alcohol oxidases, then passed directly to a series of packed-bed modules containing different aminating biocatalysts which accordingly produced a range of structurally distinct amines. The method was expanded to employ a batch incompatible sequential amination cascade via an oxidase/transaminase/imine reductase sequence, introducing different amine reagents at each step without cross-reactivity. The combined approaches allowed for the biocatalytic synthesis of the natural product 4O-methylnorbelladine.


Subject(s)
Alcohol Oxidoreductases/metabolism , Amines/metabolism , Biological Products/metabolism , Amines/chemistry , Biocatalysis , Biological Products/chemistry , Molecular Structure
2.
ACS Cent Sci ; 9(1): 103-108, 2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36712485

ABSTRACT

Iminosugar scaffolds are highly sought-after pharmaceutical targets, but their chemical synthesis is lengthy and can suffer from poor scalability and purification. Here we report protecting-group-free chemoenzymatic and biocatalytic cascades to synthesize iminosugars from sugar-derived aminopolyols in two steps. Using galactose oxidase variant F2 followed by a chemical or enzymatic reduction provided an efficient one-pot route to these targets, with product formation >70%. Key to success of this strategy was the application of genome mining, which identified bacterial shikimate dehydrogenases as promiscuous iminosugar reductases. The cell-free protocols allowed for isolation of highly polar iminosugar products from biotransformations in a single step through development of a gradient-elution cation exchange purification. The two-step pathway provides a short synthetic route that can be used as a cell-free platform for broader iminosugar synthesis.

3.
ACS Catal ; 13(17): 11771-11780, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37671181

ABSTRACT

Despite the increasing use of biocatalysis for organic synthesis, there are currently no databases that adequately capture synthetic biotransformations. The lack of a biocatalysis database prevents accelerating biocatalyst characterization efforts from being leveraged to quickly identify candidate enzymes for reactions or cascades, slowing their development. The RetroBioCat Database (available at retrobiocat.com) addresses this gap by capturing information on synthetic biotransformations and providing an analysis platform that allows biocatalysis data to be searched and explored through a range of highly interactive data visualization tools. This database makes it simple to explore available enzymes, their substrate scopes, and how characterized enzymes are related to each other and the wider sequence space. Data entry is facilitated through an openly accessible curation platform, featuring automated tools to accelerate the process. The RetroBioCat Database democratizes biocatalysis knowledge and has the potential to accelerate biocatalytic reaction development, making it a valuable resource for the community.

4.
JACS Au ; 2(10): 2251-2258, 2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36311836

ABSTRACT

Amino-polyols represent attractive chemical building blocks but can be challenging to synthesize because of the high density of asymmetric functionalities and the need for extensive protecting-group strategies. Here we present a three-component strategy for the stereoselective enzymatic synthesis of amino-diols and amino-polyols using a diverse set of prochiral aldehydes, hydroxy ketones, and amines as starting materials. We were able to combine biocatalytic aldol reactions, using variants of d-fructose-6-phosphate aldolase (FSA), with reductive aminations catalyzed by IRED-259, identified from a metagenomic library. A two-step process, without the need for intermediate isolation, was developed to avoid cross-reactivity of the carbonyl components. Stereoselective formation of the 2R,3R,4R enantiomers of amino-polyols was observed and confirmed by X-ray crystallography.

5.
Angew Chem Weinheim Bergstr Ger ; 133(34): 18808-18813, 2021 Aug 16.
Article in English | MEDLINE | ID: mdl-38505092

ABSTRACT

A key aim of biocatalysis is to mimic the ability of eukaryotic cells to carry out multistep cascades in a controlled and selective way. As biocatalytic cascades get more complex, reactions become unattainable under typical batch conditions. Here a number of continuous flow systems were used to overcome batch incompatibility, thus allowing for successful biocatalytic cascades. As proof-of-principle, reactive carbonyl intermediates were generated in situ using alcohol oxidases, then passed directly to a series of packed-bed modules containing different aminating biocatalysts which accordingly produced a range of structurally distinct amines. The method was expanded to employ a batch incompatible sequential amination cascade via an oxidase/transaminase/imine reductase sequence, introducing different amine reagents at each step without cross-reactivity. The combined approaches allowed for the biocatalytic synthesis of the natural product 4O-methylnorbelladine.

6.
Chem Commun (Camb) ; 56(57): 7949-7952, 2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32531011

ABSTRACT

Multi-enzyme cascades utilising variants of galactose oxidase and imine reductase led to the successful conversion of N-Cbz-protected l-ornithinol and l-lysinol to l-3-N-Cbz-aminopiperidine and l-3-N-Cbz-aminoazepane respectively, in up to 54% isolated yield. Streamlining the reactions into one-pot prevented potential racemisation of key labile intermediates and led to products with high enantiopurity.


Subject(s)
Azepines/metabolism , Galactose Oxidase/metabolism , Imines/metabolism , Oxidoreductases/metabolism , Piperidines/metabolism , Azepines/chemistry , Molecular Structure , Piperidines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL