Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
PLoS Pathog ; 17(7): e1009278, 2021 07.
Article in English | MEDLINE | ID: mdl-34228762

ABSTRACT

Simian immunodeficiency virus (SIV) challenge of rhesus macaques (RMs) vaccinated with strain 68-1 Rhesus Cytomegalovirus (RhCMV) vectors expressing SIV proteins (RhCMV/SIV) results in a binary outcome: stringent control and subsequent clearance of highly pathogenic SIV in ~55% of vaccinated RMs with no protection in the remaining 45%. Although previous work indicates that unconventionally restricted, SIV-specific, effector-memory (EM)-biased CD8+ T cell responses are necessary for efficacy, the magnitude of these responses does not predict efficacy, and the basis of protection vs. non-protection in 68-1 RhCMV/SIV vector-vaccinated RMs has not been elucidated. Here, we report that 68-1 RhCMV/SIV vector administration strikingly alters the whole blood transcriptome of vaccinated RMs, with the sustained induction of specific immune-related pathways, including immune cell, toll-like receptor (TLR), inflammasome/cell death, and interleukin-15 (IL-15) signaling, significantly correlating with subsequent vaccine efficacy. Treatment of a separate RM cohort with IL-15 confirmed the central involvement of this cytokine in the protection signature, linking the major innate and adaptive immune gene expression networks that correlate with RhCMV/SIV vaccine efficacy. This change-from-baseline IL-15 response signature was also demonstrated to significantly correlate with vaccine efficacy in an independent validation cohort of vaccinated and challenged RMs. The differential IL-15 gene set response to vaccination strongly correlated with the pre-vaccination activity of this pathway, with reduced baseline expression of IL-15 response genes significantly correlating with higher vaccine-induced induction of IL-15 signaling and subsequent vaccine protection, suggesting that a robust de novo vaccine-induced IL-15 signaling response is needed to program vaccine efficacy. Thus, the RhCMV/SIV vaccine imparts a coordinated and persistent induction of innate and adaptive immune pathways featuring IL-15, a known regulator of CD8+ T cell function, that support the ability of vaccine-elicited unconventionally restricted CD8+ T cells to mediate protection against SIV challenge.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Interleukin-15/immunology , SAIDS Vaccines/immunology , Simian Immunodeficiency Virus/immunology , Animals , Cytomegalovirus , Female , Genetic Vectors , Macaca mulatta , Male , Simian Acquired Immunodeficiency Syndrome/prevention & control
3.
Nature ; 502(7469): 100-4, 2013 Oct 03.
Article in English | MEDLINE | ID: mdl-24025770

ABSTRACT

Established infections with the human and simian immunodeficiency viruses (HIV and SIV, respectively) are thought to be permanent with even the most effective immune responses and antiretroviral therapies only able to control, but not clear, these infections. Whether the residual virus that maintains these infections is vulnerable to clearance is a question of central importance to the future management of millions of HIV-infected individuals. We recently reported that approximately 50% of rhesus macaques (RM; Macaca mulatta) vaccinated with SIV protein-expressing rhesus cytomegalovirus (RhCMV/SIV) vectors manifest durable, aviraemic control of infection with the highly pathogenic strain SIVmac239 (ref. 5). Here we show that regardless of the route of challenge, RhCMV/SIV vector-elicited immune responses control SIVmac239 after demonstrable lymphatic and haematogenous viral dissemination, and that replication-competent SIV persists in several sites for weeks to months. Over time, however, protected RM lost signs of SIV infection, showing a consistent lack of measurable plasma- or tissue-associated virus using ultrasensitive assays, and a loss of T-cell reactivity to SIV determinants not in the vaccine. Extensive ultrasensitive quantitative PCR and quantitative PCR with reverse transcription analyses of tissues from RhCMV/SIV vector-protected RM necropsied 69-172 weeks after challenge did not detect SIV RNA or DNA sequences above background levels, and replication-competent SIV was not detected in these RM by extensive co-culture analysis of tissues or by adoptive transfer of 60 million haematolymphoid cells to naive RM. These data provide compelling evidence for progressive clearance of a pathogenic lentiviral infection, and suggest that some lentiviral reservoirs may be susceptible to the continuous effector memory T-cell-mediated immune surveillance elicited and maintained by cytomegalovirus vectors.


Subject(s)
SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , Animals , Cytomegalovirus/genetics , Cytomegalovirus/immunology , Female , Macaca mulatta , Male , Molecular Sequence Data , Simian Acquired Immunodeficiency Syndrome/virology , Time Factors , Vaccines, Attenuated/immunology , Viral Load , Virus Replication/physiology
4.
Nature ; 473(7348): 523-7, 2011 May 26.
Article in English | MEDLINE | ID: mdl-21562493

ABSTRACT

The acquired immunodeficiency syndrome (AIDS)-causing lentiviruses human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) effectively evade host immunity and, once established, infections with these viruses are only rarely controlled by immunological mechanisms. However, the initial establishment of infection in the first few days after mucosal exposure, before viral dissemination and massive replication, may be more vulnerable to immune control. Here we report that SIV vaccines that include rhesus cytomegalovirus (RhCMV) vectors establish indefinitely persistent, high-frequency, SIV-specific effector memory T-cell (T(EM)) responses at potential sites of SIV replication in rhesus macaques and stringently control highly pathogenic SIV(MAC239) infection early after mucosal challenge. Thirteen of twenty-four rhesus macaques receiving either RhCMV vectors alone or RhCMV vectors followed by adenovirus 5 (Ad5) vectors (versus 0 of 9 DNA/Ad5-vaccinated rhesus macaques) manifested early complete control of SIV (undetectable plasma virus), and in twelve of these thirteen animals we observed long-term (≥1 year) protection. This was characterized by: occasional blips of plasma viraemia that ultimately waned; predominantly undetectable cell-associated viral load in blood and lymph node mononuclear cells; no depletion of effector-site CD4(+) memory T cells; no induction or boosting of SIV Env-specific antibodies; and induction and then loss of T-cell responses to an SIV protein (Vif) not included in the RhCMV vectors. Protection correlated with the magnitude of the peak SIV-specific CD8(+) T-cell responses in the vaccine phase, and occurred without anamnestic T-cell responses. Remarkably, long-term RhCMV vector-associated SIV control was insensitive to either CD8(+) or CD4(+) lymphocyte depletion and, at necropsy, cell-associated SIV was only occasionally measurable at the limit of detection with ultrasensitive assays, observations that indicate the possibility of eventual viral clearance. Thus, persistent vectors such as CMV and their associated T(EM) responses might significantly contribute to an efficacious HIV/AIDS vaccine.


Subject(s)
Immunologic Memory/immunology , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/pathogenicity , T-Lymphocytes/immunology , AIDS Vaccines/immunology , Animals , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus/genetics , DNA, Viral/analysis , Genetic Vectors/genetics , Immunity, Mucosal/immunology , Macaca mulatta/blood , Macaca mulatta/immunology , Macaca mulatta/virology , Male , RNA, Viral/analysis , SAIDS Vaccines/genetics , Simian Acquired Immunodeficiency Syndrome/blood , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/growth & development , Simian Immunodeficiency Virus/isolation & purification , Time Factors , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Viral Load , Virus Replication
5.
JCI Insight ; 8(6)2023 03 22.
Article in English | MEDLINE | ID: mdl-36749635

ABSTRACT

Rhesus cytomegalovirus-based (RhCMV-based) vaccine vectors induce immune responses that protect ~60% of rhesus macaques (RMs) from SIVmac239 challenge. This efficacy depends on induction of effector memory-based (EM-biased) CD8+ T cells recognizing SIV peptides presented by major histocompatibility complex-E (MHC-E) instead of MHC-Ia. The phenotype, durability, and efficacy of RhCMV/SIV-elicited cellular immune responses were maintained when vector spread was severely reduced by deleting the antihost intrinsic immunity factor phosphoprotein 71 (pp71). Here, we examined the impact of an even more stringent attenuation strategy on vector-induced immune protection against SIV. Fusion of the FK506-binding protein (FKBP) degradation domain to Rh108, the orthologue of the essential human CMV (HCMV) late gene transcription factor UL79, generated RhCMV/SIV vectors that conditionally replicate only when the FK506 analog Shield-1 is present. Despite lacking in vivo dissemination and reduced innate and B cell responses to vaccination, Rh108-deficient 68-1 RhCMV/SIV vectors elicited high-frequency, durable, EM-biased, SIV-specific T cell responses in RhCMV-seropositive RMs at doses of ≥ 1 × 106 PFU. Strikingly, elicited CD8+ T cells exclusively targeted MHC-Ia-restricted epitopes and failed to protect against SIVmac239 challenge. Thus, Rh108-dependent late gene expression is required for both induction of MHC-E-restricted T cells and protection against SIV.


Subject(s)
Cytomegalovirus , Simian Immunodeficiency Virus , Animals , Humans , Cytomegalovirus/genetics , Macaca mulatta , Gene Expression
6.
Sci Immunol ; 7(72): eabn9301, 2022 06 24.
Article in English | MEDLINE | ID: mdl-35714200

ABSTRACT

The strain 68-1 rhesus cytomegalovirus (RhCMV)-based vaccine for simian immunodeficiency virus (SIV) can stringently protect rhesus macaques (RMs) from SIV challenge by arresting viral replication early in primary infection. This vaccine elicits unconventional SIV-specific CD8+ T cells that recognize epitopes presented by major histocompatibility complex (MHC)-II and MHC-E instead of MHC-Ia. Although RhCMV/SIV vaccines based on strains that only elicit MHC-II- and/or MHC-Ia-restricted CD8+ T cells do not protect against SIV, it remains unclear whether MHC-E-restricted T cells are directly responsible for protection and whether these responses can be separated from the MHC-II-restricted component. Using host microRNA (miR)-mediated vector tropism restriction, we show that the priming of MHC-II and MHC-E epitope-targeted responses depended on vector infection of different nonoverlapping cell types in RMs. Selective inhibition of RhCMV infection in myeloid cells with miR-142-mediated tropism restriction eliminated MHC-E epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-II epitope-targeted response. Inhibition with the endothelial cell-selective miR-126 eliminated MHC-II epitope-targeted CD8+ T cell priming, yielding an exclusively MHC-E epitope-targeted response. Dual miR-142 + miR-126-mediated tropism restriction reverted CD8+ T cell responses back to conventional MHC-Ia epitope targeting. Although the magnitude and differentiation state of these CD8+ T cell responses were generally similar, only the vectors programmed to elicit MHC-E-restricted CD8+ T cell responses provided protection against SIV challenge, directly demonstrating the essential role of these responses in RhCMV/SIV vaccine efficacy.


Subject(s)
Cytomegalovirus Vaccines , MicroRNAs , SAIDS Vaccines , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , CD8-Positive T-Lymphocytes , Cytomegalovirus/genetics , Epitopes , Macaca mulatta , Major Histocompatibility Complex , Myeloid Cells , Simian Acquired Immunodeficiency Syndrome/genetics , Simian Immunodeficiency Virus/genetics , Tropism , Vaccine Efficacy
7.
Sci Immunol ; 6(57)2021 03 25.
Article in English | MEDLINE | ID: mdl-33766849

ABSTRACT

Simian immunodeficiency virus (SIV) insert-expressing, 68-1 rhesus cytomegalovirus (RhCMV/SIV) vectors elicit major histocompatibility complex E (MHC-E)- and MHC-II-restricted, SIV-specific CD8+ T cell responses, but the basis of these unconventional responses and their contribution to demonstrated vaccine efficacy against SIV challenge in the rhesus monkeys (RMs) have not been characterized. We show that these unconventional responses resulted from a chance genetic rearrangement in 68-1 RhCMV that abrogated the function of eight distinct immunomodulatory gene products encoded in two RhCMV genomic regions (Rh157.5/Rh157.4 and Rh158-161), revealing three patterns of unconventional response inhibition. Differential repair of these genes with either RhCMV-derived or orthologous human CMV (HCMV)-derived sequences (UL128/UL130; UL146/UL147) leads to either of two distinct CD8+ T cell response types-MHC-Ia-restricted only or a mix of MHC-II- and MHC-Ia-restricted CD8+ T cells. Response magnitude and functional differentiation are similar to RhCMV 68-1, but neither alternative response type mediated protection against SIV challenge. These findings implicate MHC-E-restricted CD8+ T cell responses as mediators of anti-SIV efficacy and indicate that translation of RhCMV/SIV vector efficacy to humans will likely require deletion of all genes that inhibit these responses from the HCMV/HIV vector.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cellular Reprogramming/immunology , Cytomegalovirus Infections/veterinary , Cytomegalovirus/immunology , Monkey Diseases/prevention & control , Simian Acquired Immunodeficiency Syndrome/immunology , Viral Vaccines/immunology , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , CD8-Positive T-Lymphocytes/metabolism , Cellular Reprogramming/genetics , Genetic Engineering/methods , Genetic Vectors/genetics , Immunogenicity, Vaccine , Immunologic Memory , Macaca mulatta , Monkey Diseases/immunology , Monkey Diseases/virology , Open Reading Frames/genetics , Open Reading Frames/immunology , Simian Acquired Immunodeficiency Syndrome/prevention & control , Simian Immunodeficiency Virus/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Vaccine Efficacy
8.
Science ; 372(6541)2021 04 30.
Article in English | MEDLINE | ID: mdl-33766941

ABSTRACT

Strain 68-1 rhesus cytomegalovirus (RhCMV) vectors expressing simian immunodeficiency virus (SIV) antigens elicit CD8+ T cells recognizing epitopes presented by major histocompatibility complex II (MHC-II) and MHC-E but not MHC-Ia. These immune responses mediate replication arrest of SIV in 50 to 60% of monkeys. We show that the peptide VMAPRTLLL (VL9) embedded within the RhCMV protein Rh67 promotes intracellular MHC-E transport and recognition of RhCMV-infected fibroblasts by MHC-E-restricted CD8+ T cells. Deletion or mutation of viral VL9 abrogated MHC-E-restricted CD8+ T cell priming, resulting in CD8+ T cell responses exclusively targeting MHC-II-restricted epitopes. These responses were comparable in magnitude and differentiation to responses elicited by 68-1 vectors but did not protect against SIV. Thus, Rh67-enabled direct priming of MHC-E-restricted T cells is crucial for RhCMV/SIV vaccine efficacy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus/metabolism , Genetic Vectors/metabolism , Histocompatibility Antigens Class I/metabolism , Peptide Fragments/metabolism , SAIDS Vaccines/immunology , Animals , Cell Line , Cytomegalovirus/genetics , Epitopes, T-Lymphocyte/immunology , Fibroblasts/metabolism , Genetic Vectors/genetics , Histocompatibility Antigens Class I/genetics , Ligands , Macaca mulatta , Peptide Fragments/genetics , Protein Transport , Simian Immunodeficiency Virus , HLA-E Antigens
9.
Sci Transl Med ; 11(501)2019 07 17.
Article in English | MEDLINE | ID: mdl-31316006

ABSTRACT

Rhesus cytomegalovirus (RhCMV)-based vaccines maintain effector memory T cell responses (TEM) that protect ~50% of rhesus monkeys (RMs) challenged with simian immunodeficiency virus (SIV). Because human CMV (HCMV) causes disease in immunodeficient subjects, clinical translation will depend upon attenuation strategies that reduce pathogenic potential without sacrificing CMV's unique immunological properties. We demonstrate that "intrinsic" immunity can be used to attenuate strain 68-1 RhCMV vectors without impairment of immunogenicity. The tegument proteins pp71 and UL35 encoded by UL82 and UL35 of HCMV counteract cell-intrinsic restriction via degradation of host transcriptional repressors. When the corresponding RhCMV genes, Rh110 and Rh59, were deleted from 68-1 RhCMV (ΔRh110 and ΔRh59), we observed only a modest growth defect in vitro, but in vivo, these modified vectors manifested little to no amplification at the injection site and dissemination to distant sites, in contrast to parental 68-1 RhCMV. ΔRh110 was not shed at any time after infection and was not transmitted to naïve hosts either by close contact (mother to infant) or by leukocyte transfusion. In contrast, ΔRh59 was both shed and transmitted by leukocyte transfusion, indicating less effective attenuation than pp71 deletion. The T cell immunogenicity of ΔRh110 was essentially identical to 68-1 RhCMV with respect to magnitude, TEM phenotype, epitope targeting, and durability. Thus, pp71 deletion preserves CMV vector immunogenicity while stringently limiting vector spread, making pp71 deletion an attractive attenuation strategy for HCMV vectors.


Subject(s)
Cytomegalovirus Vaccines/immunology , Cytomegalovirus/immunology , Genetic Vectors/immunology , Immunity , Animals , Co-Repressor Proteins/metabolism , Cytomegalovirus/growth & development , Gene Deletion , Leukocytes/metabolism , Macaca mulatta , Proteolysis , Recombination, Genetic/genetics , T-Lymphocytes/immunology , Viral Proteins/metabolism
10.
PLoS One ; 14(1): e0210252, 2019.
Article in English | MEDLINE | ID: mdl-30673723

ABSTRACT

The development of a sterilizing vaccine against malaria remains one of the highest priorities for global health research. While sporozoite vaccines targeting the pre-erythrocytic stage show great promise, it has not been possible to maintain efficacy long-term, likely due to an inability of these vaccines to maintain effector memory T cell responses in the liver. Vaccines based on human cytomegalovirus (HCMV) might overcome this limitation since vectors based on rhesus CMV (RhCMV), the homologous virus in rhesus macaques (RM), elicit and indefinitely maintain high frequency, non-exhausted effector memory T cells in extralymphoid tissues, including the liver. Moreover, RhCMV strain 68-1 elicits CD8+ T cells broadly recognizing unconventional epitopes exclusively restricted by MHC-II and MHC-E. To evaluate the potential of these unique immune responses to protect against malaria, we expressed four Plasmodium knowlesi (Pk) antigens (CSP, AMA1, SSP2/TRAP, MSP1c) in RhCMV 68-1 or in Rh189-deleted 68-1, which additionally elicits canonical MHC-Ia-restricted CD8+ T cells. Upon inoculation of RM with either of these Pk Ag expressing RhCMV vaccines, we obtained T cell responses to each of the four Pk antigens. Upon challenge with Pk sporozoites we observed a delayed appearance of blood stage parasites in vaccinated RM consistent with a 75-80% reduction of parasite release from the liver. Moreover, the Rh189-deleted RhCMV/Pk vectors elicited sterile protection in one RM. Once in the blood, parasite growth was not affected. In contrast to T cell responses induced by Pk infection, RhCMV vectors maintained sustained T cell responses to all four malaria antigens in the liver post-challenge. The delayed appearance of blood stage parasites is thus likely due to a T cell-mediated inhibition of liver stage parasite development. As such, this vaccine approach can be used to efficiently test new T cell antigens, improve current vaccines targeting the liver stage and complement vaccines targeting erythrocytic antigens.


Subject(s)
Antigens, Protozoan/immunology , Cytomegalovirus/genetics , Malaria Vaccines/immunology , Malaria/immunology , Parasitemia/immunology , Plasmodium knowlesi/immunology , Sporozoites/immunology , Animals , Anopheles/immunology , Anopheles/parasitology , Female , Genetic Vectors/administration & dosage , Immunologic Memory , Liver/immunology , Liver/parasitology , Macaca mulatta , Malaria/blood , Malaria/parasitology , Malaria/prevention & control , Male , Parasitemia/blood , Parasitemia/parasitology , Parasitemia/prevention & control , Plasmodium knowlesi/genetics , Protozoan Proteins/immunology , T-Lymphocytes/immunology , T-Lymphocytes/parasitology
11.
Sci Transl Med ; 11(501)2019 07 17.
Article in English | MEDLINE | ID: mdl-31316007

ABSTRACT

Previous studies have established that strain 68-1-derived rhesus cytomegalovirus (RhCMV) vectors expressing simian immunodeficiency virus (SIV) proteins (RhCMV/SIV) are able to elicit and maintain cellular immune responses that provide protection against mucosal challenge of highly pathogenic SIV in rhesus monkeys (RMs). However, these efficacious RhCMV/SIV vectors were replication and spread competent and therefore have the potential to cause disease in immunocompromised subjects. To develop a safer CMV-based vaccine for clinical use, we attenuated 68-1 RhCMV/SIV vectors by deletion of the Rh110 gene encoding the pp71 tegument protein (ΔRh110), allowing for suppression of lytic gene expression. ΔRh110 RhCMV/SIV vectors are highly spread deficient in vivo (~1000-fold compared to the parent vector) yet are still able to superinfect RhCMV+ RMs and generate high-frequency effector-memory-biased T cell responses. Here, we demonstrate that ΔRh110 68-1 RhCMV/SIV-expressing homologous or heterologous SIV antigens are highly efficacious against intravaginal (IVag) SIVmac239 challenge, providing control and progressive clearance of SIV infection in 59% of vaccinated RMs. Moreover, among 12 ΔRh110 RhCMV/SIV-vaccinated RMs that controlled and progressively cleared an initial SIV challenge, 9 were able to stringently control a second SIV challenge ~3 years after last vaccination, demonstrating the durability of this vaccine. Thus, ΔRh110 RhCMV/SIV vectors have a safety and efficacy profile that warrants adaptation and clinical evaluation of corresponding HCMV vectors as a prophylactic HIV/AIDS vaccine.


Subject(s)
Cytomegalovirus Vaccines/immunology , Cytomegalovirus/immunology , SAIDS Vaccines/immunology , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/immunology , Vaccines, Attenuated/immunology , Animals , Genetic Vectors/metabolism , Macaca mulatta , Necrosis , T-Lymphocytes/immunology , Time Factors , Treatment Outcome , Vaccination
12.
Nat Med ; 24(9): 1430-1440, 2018 09.
Article in English | MEDLINE | ID: mdl-30082858

ABSTRACT

Prophylactic vaccination of rhesus macaques with rhesus cytomegalovirus (RhCMV) vectors expressing simian immunodeficiency virus (SIV) antigens (RhCMV/SIV) elicits immune responses that stringently control highly pathogenic SIV infection, with subsequent apparent clearance of the infection, in ~50% of vaccinees. In contrast, here, we show that therapeutic RhCMV/SIV vaccination of rhesus macaques previously infected with SIV and given continuous combination antiretroviral therapy (cART) beginning 4-9 d post-SIV infection does not mediate measurable SIV reservoir clearance during over 600 d of follow-up on cART relative to RhCMV/control vaccination. However, none of the six animals started on cART on day four or five, across both RhCMV/SIV- and RhCMV/control-vaccinated groups, those rhesus macaques with SIV reservoirs most closely resembling those of prophylactically RhCMV/SIV-vaccinated and protected animals early in their course, showed post-cART viral rebound with up to nine months of follow-up. Moreover, at necropsy, these rhesus macaques showed little to no evidence of replication-competent SIV. These results suggest that the early SIV reservoir is limited in durability and that effective blockade of viral replication and spread in this critical time window by either pharmacologic or immunologic suppression may result in reduction, and potentially loss, of rebound-competent virus over a period of ~two years.


Subject(s)
Anti-Retroviral Agents/therapeutic use , Simian Acquired Immunodeficiency Syndrome/drug therapy , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/physiology , Adoptive Transfer , Animals , Anti-Retroviral Agents/pharmacology , Drug Therapy, Combination , Kinetics , Macaca mulatta , Necrosis , Simian Immunodeficiency Virus/drug effects , Vaccination , Viral Vaccines/immunology , Viremia/drug therapy , Virus Replication
13.
Nat Med ; 24(2): 130-143, 2018 02.
Article in English | MEDLINE | ID: mdl-29334373

ABSTRACT

Despite widespread use of the bacille Calmette-Guérin (BCG) vaccine, tuberculosis (TB) remains a leading cause of global mortality from a single infectious agent (Mycobacterium tuberculosis or Mtb). Here, over two independent Mtb challenge studies, we demonstrate that subcutaneous vaccination of rhesus macaques (RMs) with rhesus cytomegalovirus vectors encoding Mtb antigen inserts (hereafter referred to as RhCMV/TB)-which elicit and maintain highly effector-differentiated, circulating and tissue-resident Mtb-specific CD4+ and CD8+ memory T cell responses-can reduce the overall (pulmonary and extrapulmonary) extent of Mtb infection and disease by 68%, as compared to that in unvaccinated controls, after intrabronchial challenge with the Erdman strain of Mtb at ∼1 year after the first vaccination. Fourteen of 34 RhCMV/TB-vaccinated RMs (41%) across both studies showed no TB disease by computed tomography scans or at necropsy after challenge (as compared to 0 of 17 unvaccinated controls), and ten of these RMs were Mtb-culture-negative for all tissues, an exceptional long-term vaccine effect in the RM challenge model with the Erdman strain of Mtb. These results suggest that complete vaccine-mediated immune control of highly pathogenic Mtb is possible if immune effector responses can intercept Mtb infection at its earliest stages.


Subject(s)
Mycobacterium tuberculosis/immunology , Tuberculosis/immunology , Animals , BCG Vaccine/immunology , Cytomegalovirus/immunology , Macaca mulatta/immunology
14.
Science ; 351(6274): 714-20, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26797147

ABSTRACT

Major histocompatibility complex E (MHC-E) is a highly conserved, ubiquitously expressed, nonclassical MHC class Ib molecule with limited polymorphism that is primarily involved in the regulation of natural killer (NK) cells. We found that vaccinating rhesus macaques with rhesus cytomegalovirus vectors in which genes Rh157.5 and Rh157.4 are deleted results in MHC-E-restricted presentation of highly varied peptide epitopes to CD8αß(+) T cells, at ~4 distinct epitopes per 100 amino acids in all tested antigens. Computational structural analysis revealed that MHC-E provides heterogeneous chemical environments for diverse side-chain interactions within a stable, open binding groove. Because MHC-E is up-regulated to evade NK cell activity in cells infected with HIV, simian immunodeficiency virus, and other persistent viruses, MHC-E-restricted CD8(+) T cell responses have the potential to exploit pathogen immune-evasion adaptations, a capability that might endow these unconventional responses with superior efficacy.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus/immunology , Epitopes, T-Lymphocyte/immunology , Histocompatibility Antigens Class I/immunology , Simian Immunodeficiency Virus/immunology , Animals , Antigen Presentation , Antigenic Variation , Cytomegalovirus/genetics , Epitopes, T-Lymphocyte/chemistry , Genetic Vectors/genetics , Genetic Vectors/immunology , Histocompatibility Antigens Class I/chemistry , Host-Pathogen Interactions/immunology , Immune Evasion , Killer Cells, Natural/immunology , Macaca mulatta , Protein Structure, Secondary , Vaccination
15.
Science ; 340(6135): 1237874, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23704576

ABSTRACT

CD8(+) T cell responses focus on a small fraction of pathogen- or vaccine-encoded peptides, and for some pathogens, these restricted recognition hierarchies limit the effectiveness of antipathogen immunity. We found that simian immunodeficiency virus (SIV) protein-expressing rhesus cytomegalovirus (RhCMV) vectors elicit SIV-specific CD8(+) T cells that recognize unusual, diverse, and highly promiscuous epitopes, including dominant responses to epitopes restricted by class II major histocompatibility complex (MHC) molecules. Induction of canonical SIV epitope-specific CD8(+) T cell responses is suppressed by the RhCMV-encoded Rh189 gene (corresponding to human CMV US11), and the promiscuous MHC class I- and class II-restricted CD8(+) T cell responses occur only in the absence of the Rh157.5, Rh157.4, and Rh157.6 (human CMV UL128, UL130, and UL131) genes. Thus, CMV vectors can be genetically programmed to achieve distinct patterns of CD8(+) T cell epitope recognition.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus/immunology , Epitopes, T-Lymphocyte/immunology , Genetic Vectors/immunology , SAIDS Vaccines/immunology , Animals , Cytokines/immunology , Cytomegalovirus/genetics , Female , Genetic Vectors/genetics , Histocompatibility Antigens Class II/immunology , Humans , Macaca mulatta , Male , Membrane Glycoproteins/genetics , SAIDS Vaccines/administration & dosage , Viral Envelope Proteins/genetics
16.
Science ; 328(5974): 102-6, 2010 Apr 02.
Article in English | MEDLINE | ID: mdl-20360110

ABSTRACT

Cytomegalovirus (CMV) can superinfect persistently infected hosts despite CMV-specific humoral and cellular immunity; however, how it does so remains undefined. We have demonstrated that superinfection of rhesus CMV-infected rhesus macaques (RM) requires evasion of CD8+ T cell immunity by virally encoded inhibitors of major histocompatibility complex class I (MHC-I) antigen presentation, particularly the homologs of human CMV US2, 3, 6, and 11. In contrast, MHC-I interference was dispensable for primary infection of RM, or for the establishment of a persistent secondary infection in CMV-infected RM transiently depleted of CD8+ lymphocytes. These findings demonstrate that US2-11 glycoproteins promote evasion of CD8+ T cells in vivo, thus supporting viral replication and dissemination during superinfection, a process that complicates the development of preventive CMV vaccines but that can be exploited for CMV-based vector development.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Cytomegalovirus/physiology , Immune Evasion , Immunologic Factors/physiology , Viral Proteins/physiology , Animals , Antigen Presentation , CD4-Positive T-Lymphocytes/immunology , Cytomegalovirus/genetics , Cytomegalovirus/immunology , Cytomegalovirus Vaccines/immunology , Disease Models, Animal , Gene Products, gag/immunology , Genes, Viral , Histocompatibility Antigens Class I/immunology , Immunologic Factors/genetics , Macaca mulatta , Male , Simian Immunodeficiency Virus/genetics , Simian Immunodeficiency Virus/immunology , Superinfection , Viral Proteins/genetics , Virus Replication , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL