Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Vet Immunol Immunopathol ; 202: 1-10, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30078581

ABSTRACT

Preservation of a pathogen free uterine environment is critical for maintaining healthy swine herds with high reproductive performance. Considering that uterine epithelial cells are the most numerous and thus likely point of cellular contact for pathogens in the uterus, we hypothesize that these cells may be critical for activating the immune system to clear uterine infections. Although uterine epithelial cells have not been well characterized in pigs, studies in several other species have shown that these cells express several pattern recognition receptors (PRR) and thus may act as sentinels for the uterine immune response. To characterize PRR expression in the porcine uterine epithelia, we used laser-capture microdissection to isolate epithelial cells lining the porcine uterus to quantify in vivo mRNA expression levels for select PRRs. As well, primary uterine epithelial cells (UECs) were isolated, cultured, polarized and PRR expression was quantified. Immunohistofluorescence and immunofluorescence were used to determine subcellular localization of TLR3, TLR4 and TLR9 in both uterine tissue and in polarized primary UECs. Finally, polarized primary UECs were stimulated with ligands for TLR3, TLR4, TLR9 and NOD2 to determine their functional innate immune response. Uterine epithelial cells (in vivo and in vitro) were shown to express TLR1-7, TLR9, NOD1, NOD2, NLRP3, NLRP6, NLRX1, RIG1, MDA5 and LGP2. Subcellular localization of in vivo and polarized primary UECs exhibited TLR3 and TLR9 localized to the apical cell surface whereas TLR4 was localized to the intracellular space. Polarized primary UECs stimulated with TLR3, TLR4 and TLR9 ligands showed induced secretion of IL-6, IL-13 and IL-10, respectively indicating that these receptors were functional. These results indicate that pig uterine epithelial cells are functional innate immune cells that may act as sentinels to protect against uterine infection.


Subject(s)
Epithelial Cells/metabolism , Immunity, Innate , Receptors, Pattern Recognition/metabolism , Toll-Like Receptors/metabolism , Uterus/cytology , Acetylmuramyl-Alanyl-Isoglutamine/pharmacology , Animals , Cells, Cultured , Cytokines/metabolism , Epithelial Cells/immunology , Female , Lipopolysaccharides/pharmacology , Oligodeoxyribonucleotides/pharmacology , Poly I-C/pharmacology , Real-Time Polymerase Chain Reaction , Swine , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 9/metabolism
2.
Am J Reprod Immunol ; 78(5)2017 Nov.
Article in English | MEDLINE | ID: mdl-28771858

ABSTRACT

PROBLEM: Mucosal vaccines have long been sought after to improve protection though the production of both a mucosal and systemic immune response, and are thought to be particularly effective at the site of induction. Development of such vaccines has, however, been delayed by the general propensity to develop immune tolerance to antigens encountered at mucosal sites. This study aimed to determine whether an appropriately formulated subunit vaccine delivered to the uterine lumen would effectively trigger induction of immunity over tolerance. METHODS: Ovalbumin (OVA), truncated glycoprotein D (tGD) from bovine herpesvirus, and a fusion protein of porcine parvovirus VP2 and bacterial thioredoxin (rVP2-TrX) were each formulated with a tri-adjuvant combination of Poly(I : C) (PIC), a host defense peptide (HDP), and a polyphosphazene (PCEP). A single dose of vaccine was delivered either intramuscularly (IM) or into the uterine lumen of intact female rabbits, and the humoral response subsequently evaluated both systemically and at local and distal mucosal sites. RESULTS: Vaccination through either route-induced antigen-specific humoral responses systemically and within the local (uterus) and distal mucosa (lungs and vagina). The observed mucosal response was not compartmentalized to, or within, the upper genital tract and the degree of response appeared to be at least in part antigen dependant. CONCLUSION: The results of this study provide proof of principle that the uterus can be used as an induction site for subunit vaccination and that vaccine formulation with appropriate adjuvants can trigger both systemic and mucosal immunity when administered IM or into the uterine lumen.


Subject(s)
Immunity, Humoral , Immunity, Mucosal , Uterus/immunology , Vaccines, Subunit/immunology , Adjuvants, Immunologic/administration & dosage , Animals , Antigens/immunology , Cattle , Female , Humans , Immune Tolerance , Rabbits , Swine , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL