ABSTRACT
AIMS/HYPOTHESIS: This prospective, observational study examines associations between 51 urinary metabolites and risk of progression of diabetic nephropathy in individuals with type 1 diabetes by employing an automated NMR metabolomics technique suitable for large-scale urine sample collections. METHODS: We collected 24-h urine samples for 2670 individuals with type 1 diabetes from the Finnish Diabetic Nephropathy study and measured metabolite concentrations by NMR. Individuals were followed up for 9.0 ± 5.0 years until their first sign of progression of diabetic nephropathy, end-stage kidney disease or study end. Cox regressions were performed on the entire study population (overall progression), on 1999 individuals with normoalbuminuria and 347 individuals with macroalbuminuria at baseline. RESULTS: Seven urinary metabolites were associated with overall progression after adjustment for baseline albuminuria and chronic kidney disease stage (p < 8 × 10-4): leucine (HR 1.47 [95% CI 1.30, 1.66] per 1-SD creatinine-scaled metabolite concentration), valine (1.38 [1.22, 1.56]), isoleucine (1.33 [1.18, 1.50]), pseudouridine (1.25 [1.11, 1.42]), threonine (1.27 [1.11, 1.46]) and citrate (0.84 [0.75, 0.93]). 2-Hydroxyisobutyrate was associated with overall progression (1.30 [1.16, 1.45]) and also progression from normoalbuminuria (1.56 [1.25, 1.95]). Six amino acids and pyroglutamate were associated with progression from macroalbuminuria. CONCLUSIONS/INTERPRETATION: Branched-chain amino acids and other urinary metabolites were associated with the progression of diabetic nephropathy on top of baseline albuminuria and chronic kidney disease. We found differences in associations for overall progression and progression from normo- and macroalbuminuria. These novel discoveries illustrate the utility of analysing urinary metabolites in entire population cohorts.
Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Nephropathies , Albuminuria/metabolism , Creatinine , Diabetes Mellitus, Type 1/complications , Diabetic Nephropathies/metabolism , Disease Progression , Humans , Prospective StudiesABSTRACT
AIMS/HYPOTHESIS: Diabetic kidney disease (DKD) is the leading cause of kidney failure and has a substantial genetic component. Our aim was to identify novel genetic factors and genes contributing to DKD by performing meta-analysis of previous genome-wide association studies (GWAS) on DKD and by integrating the results with renal transcriptomics datasets. METHODS: We performed GWAS meta-analyses using ten phenotypic definitions of DKD, including nearly 27,000 individuals with diabetes. Meta-analysis results were integrated with estimated quantitative trait locus data from human glomerular (N=119) and tubular (N=121) samples to perform transcriptome-wide association study. We also performed gene aggregate tests to jointly test all available common genetic markers within a gene, and combined the results with various kidney omics datasets. RESULTS: The meta-analysis identified a novel intronic variant (rs72831309) in the TENM2 gene associated with a lower risk of the combined chronic kidney disease (eGFR<60 ml/min per 1.73 m2) and DKD (microalbuminuria or worse) phenotype (p=9.8×10-9; although not withstanding correction for multiple testing, p>9.3×10-9). Gene-level analysis identified ten genes associated with DKD (COL20A1, DCLK1, EIF4E, PTPRN-RESP18, GPR158, INIP-SNX30, LSM14A and MFF; p<2.7×10-6). Integration of GWAS with human glomerular and tubular expression data demonstrated higher tubular AKIRIN2 gene expression in individuals with vs without DKD (p=1.1×10-6). The lead SNPs within six loci significantly altered DNA methylation of a nearby CpG site in kidneys (p<1.5×10-11). Expression of lead genes in kidney tubules or glomeruli correlated with relevant pathological phenotypes (e.g. TENM2 expression correlated positively with eGFR [p=1.6×10-8] and negatively with tubulointerstitial fibrosis [p=2.0×10-9], tubular DCLK1 expression correlated positively with fibrosis [p=7.4×10-16], and SNX30 expression correlated positively with eGFR [p=5.8×10-14] and negatively with fibrosis [p<2.0×10-16]). CONCLUSIONS/INTERPRETATION: Altogether, the results point to novel genes contributing to the pathogenesis of DKD. DATA AVAILABILITY: The GWAS meta-analysis results can be accessed via the type 1 and type 2 diabetes (T1D and T2D, respectively) and Common Metabolic Diseases (CMD) Knowledge Portals, and downloaded on their respective download pages ( https://t1d.hugeamp.org/downloads.html ; https://t2d.hugeamp.org/downloads.html ; https://hugeamp.org/downloads.html ).
Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/metabolism , Doublecortin-Like Kinases , Fibrosis , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins/genetics , Kidney/metabolism , Polymorphism, Single Nucleotide/genetics , Protein Serine-Threonine Kinases/geneticsABSTRACT
OBJECTIVES: We studied apolipoprotein C-III (apoC-III) in relation to diabetic kidney disease (DKD), cardiovascular outcomes, and mortality in type 1 diabetes. METHODS: The cohort comprised 3966 participants from the prospective observational Finnish Diabetic Nephropathy Study. Progression of DKD was determined from medical records. A major adverse cardiac event (MACE) was defined as acute myocardial infarction, coronary revascularization, stroke, or cardiovascular mortality through 2017. Cardiovascular and mortality data were retrieved from national registries. RESULTS: ApoC-III predicted DKD progression independent of sex, diabetes duration, blood pressure, HbA1c , smoking, LDL-cholesterol, lipid-lowering medication, DKD category, and remnant cholesterol (hazard ratio [HR] 1.43 [95% confidence interval 1.05-1.94], p = 0.02). ApoC-III also predicted the MACE in a multivariable regression analysis; however, it was not independent of remnant cholesterol (HR 1.05 [0.81-1.36, p = 0.71] with remnant cholesterol; 1.30 [1.03-1.64, p = 0.03] without). DKD-specific analyses revealed that the association was driven by individuals with albuminuria, as no link between apoC-III and the outcome was observed in the normal albumin excretion or kidney failure categories. The same was observed for mortality: Individuals with albuminuria had an adjusted HR of 1.49 (1.03-2.16, p = 0.03) for premature death, while no association was found in the other groups. The highest apoC-III quartile displayed a markedly higher risk of MACE and death than the lower quartiles; however, this nonlinear relationship flattened after adjustment. CONCLUSIONS: The impact of apoC-III on MACE risk and mortality is restricted to those with albuminuria among individuals with type 1 diabetes. This study also revealed that apoC-III predicts DKD progression, independent of the initial DKD category.
Subject(s)
Apolipoprotein C-III , Cardiovascular Diseases , Diabetes Mellitus, Type 1 , Diabetic Nephropathies , Albuminuria , Diabetes Mellitus, Type 1/complications , Finland , HumansABSTRACT
BACKGROUND: Rare variants in gene coding regions likely have a greater impact on disease-related phenotypes than common variants through disruption of their encoded protein. We searched for rare variants associated with onset of ESKD in individuals with type 1 diabetes at advanced kidney disease stage. METHODS: Gene-based exome array analyses of 15,449 genes in five large incidence cohorts of individuals with type 1 diabetes and proteinuria were analyzed for survival time to ESKD, testing the top gene in a sixth cohort (n=2372/1115 events all cohorts) and replicating in two retrospective case-control studies (n=1072 cases, 752 controls). Deep resequencing of the top associated gene in five cohorts confirmed the findings. We performed immunohistochemistry and gene expression experiments in human control and diseased cells, and in mouse ischemia reperfusion and aristolochic acid nephropathy models. RESULTS: Protein coding variants in the hydroxysteroid 17-ß dehydrogenase 14 gene (HSD17B14), predicted to affect protein structure, had a net protective effect against development of ESKD at exome-wide significance (n=4196; P value=3.3 × 10-7). The HSD17B14 gene and encoded enzyme were robustly expressed in healthy human kidney, maximally in proximal tubular cells. Paradoxically, gene and protein expression were attenuated in human diabetic proximal tubules and in mouse kidney injury models. Expressed HSD17B14 gene and protein levels remained low without recovery after 21 days in a murine ischemic reperfusion injury model. Decreased gene expression was found in other CKD-associated renal pathologies. CONCLUSIONS: HSD17B14 gene is mechanistically involved in diabetic kidney disease. The encoded sex steroid enzyme is a druggable target, potentially opening a new avenue for therapeutic development.
Subject(s)
17-Hydroxysteroid Dehydrogenases/genetics , 17-Hydroxysteroid Dehydrogenases/metabolism , Diabetic Nephropathies/genetics , Kidney Failure, Chronic/genetics , Adult , Animals , Case-Control Studies , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetic Nephropathies/complications , Diabetic Nephropathies/metabolism , Disease Progression , Exome , Female , Gene Expression , Genetic Variation , Humans , Kidney Failure, Chronic/etiology , Kidney Failure, Chronic/metabolism , Kidney Tubules, Proximal/enzymology , Male , Mice , Middle Aged , Protein Structural Elements/genetics , Reperfusion Injury/complications , Retrospective Studies , Survival RateABSTRACT
BACKGROUND: Obesity and type 2 diabetes are well-known risk factors for heart failure (HF). Although obesity has increased in type 1 diabetes, studies regarding HF in this population are scarce. Therefore, we investigated the impact of body fat distribution on the risk of HF hospitalization or death in adults with type 1 diabetes at different stages of diabetic nephropathy (DN). METHODS: From 5401 adults with type 1 diabetes in the Finnish Diabetic Nephropathy Study, 4668 were included in this analysis. The outcome was HF hospitalization or death identified from the Finnish Care Register for Health Care or the Causes of Death Register until the end of 2017. DN was based on urinary albumin excretion rate. A body mass index (BMI) ≥ 30 kg/m2 defined general obesity, whilst WHtR ≥ 0.5 central obesity. Multivariable Cox regression was used to explore the associations between central obesity, general obesity and the outcome. Then, subgroup analyses were performed by DN stages. Z statistic was used for ranking the association. RESULTS: During a median follow-up of 16.4 (IQR 12.4-18.5) years, 323 incident cases occurred. From 308 hospitalizations due to HF, 35 resulted in death. Further 15 deaths occurred without previous hospitalization. The WHtR showed a stronger association with the outcome [HR 1.51, 95% CI (1.26-1.81), z = 4.40] than BMI [HR 1.05, 95% CI (1.01-1.08), z = 2.71]. HbA1c [HR 1.35, 95% CI (1.24-1.46), z = 7.19] was the most relevant modifiable risk factor for the outcome whereas WHtR was the third. Individuals with microalbuminuria but no central obesity had a similar risk of the outcome as those with normoalbuminuria. General obesity was associated with the outcome only at the macroalbuminuria stage. CONCLUSIONS: Central obesity associates with an increased risk of heart failure hospitalization or death in adults with type 1 diabetes, and WHtR may be a clinically useful screening tool.
Subject(s)
Diabetes Mellitus, Type 1/epidemiology , Heart Failure/epidemiology , Hospitalization , Obesity, Abdominal/epidemiology , Adult , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/mortality , Diabetes Mellitus, Type 1/therapy , Female , Finland/epidemiology , Heart Failure/diagnosis , Heart Failure/mortality , Heart Failure/therapy , Hospital Mortality , Humans , Incidence , Longitudinal Studies , Male , Middle Aged , Obesity, Abdominal/diagnosis , Obesity, Abdominal/mortality , Obesity, Abdominal/therapy , Predictive Value of Tests , Prognosis , Risk Assessment , Risk Factors , Time Factors , Waist-Height RatioABSTRACT
BACKGROUND: Chronic kidney disease (CKD) shows different clinical features in Types1 (T1D) and 2 diabetes (T2D). Metabolomics have recently provided useful contribution to the identification of biomarkers of CKD progression in either form of the disease. However, no studies have so far compared plasma metabolomics between T1D and T2D in order to identify differential signatures of progression of estimated glomerular filtration rate (eGFR) decline. METHODS: We used two large cohorts of T1D (from Finland) and T2D (from Italy) patients followed up to 7 and 3 years, respectively. In both groups, progression was defined as the top quartile of yearly decline in eGFR. Pooled data from the two groups were analysed by univariate and bivariate random forest (RF), and confirmed by bivariate partial least squares (PLS) analysis, the response variables being type of diabetes and eGFR progression. RESULTS: In progressors, yearly eGFR loss was significantly larger in T2D [-5.3 (3.0), median (interquartile range)mL/min/1.73 m2/year] than T1D [-3.7 (3.1) mL/min/1.73 m2/year ; P = 0.018]. Out of several hundreds, bivariate RF extracted 22 metabolites associated with diabetes type (all higher in T1D than T2D except for 5-methylthioadenosine, pyruvate and ß-hydroxypyruvate) and 13 molecules associated with eGFR progression (all higher in progressors than non-progressors except for sphyngomyelin). Three of the selected metabolites (histidylphenylalanine, leucylphenylalanine, tryptophylasparagine) showed a significant interaction between disease type and progression. Only eight metabolites were common to both bivariate RF and PLS. CONCLUSIONS: Identification of metabolomic signatures of CKD progression is partially dependent on the statistical model. Dual analysis identified molecules specifically associated with progressive renal impairment in both T1D and T2D.
Subject(s)
Diabetes Mellitus, Type 2 , Diabetes Mellitus , Diabetic Nephropathies , Renal Insufficiency, Chronic , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/etiology , Disease Progression , Glomerular Filtration Rate , Humans , Kidney/physiology , Metabolomics , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/etiologyABSTRACT
BACKGROUND: Several genetic susceptibility loci associated with diabetic nephropathy have been documented, but no causative variants implying novel pathogenetic mechanisms have been elucidated. METHODS: We carried out whole-genome sequencing of a discovery cohort of Finnish siblings with type 1 diabetes who were discordant for the presence (case) or absence (control) of diabetic nephropathy. Controls had diabetes without complications for 15-37 years. We analyzed and annotated variants at genome, gene, and single-nucleotide variant levels. We then replicated the associated variants, genes, and regions in a replication cohort from the Finnish Diabetic Nephropathy study that included 3531 unrelated Finns with type 1 diabetes. RESULTS: We observed protein-altering variants and an enrichment of variants in regions associated with the presence or absence of diabetic nephropathy. The replication cohort confirmed variants in both regulatory and protein-coding regions. We also observed that diabetic nephropathy-associated variants, when clustered at the gene level, are enriched in a core protein-interaction network representing proteins essential for podocyte function. These genes include protein kinases (protein kinase C isoforms ε and ι) and protein tyrosine kinase 2. CONCLUSIONS: Our comprehensive analysis of a diabetic nephropathy cohort of siblings with type 1 diabetes who were discordant for kidney disease points to variants and genes that are potentially causative or protective for diabetic nephropathy. This includes variants in two isoforms of the protein kinase C family not previously linked to diabetic nephropathy, adding support to previous hypotheses that the protein kinase C family members play a role in diabetic nephropathy and might be attractive therapeutic targets.
Subject(s)
Diabetes Mellitus, Type 1/complications , Diabetic Nephropathies/genetics , Whole Genome Sequencing/methods , Adolescent , Adult , Animals , Child , Child, Preschool , Diabetes Mellitus, Type 1/genetics , Female , HEK293 Cells , Humans , Male , Polymorphism, Single Nucleotide , Protein Kinase C/physiology , Siblings , Young Adult , ZebrafishABSTRACT
AIMS/HYPOTHESIS: Lipid abnormalities are associated with diabetic kidney disease and CHD, although their exact role has not yet been fully explained. Sphingomyelin, the predominant sphingolipid in humans, is crucial for intact glomerular and endothelial function. Therefore, the objective of our study was to investigate whether sphingomyelin impacts kidney disease and CHD progression in individuals with type 1 diabetes. METHODS: Individuals (n = 1087) from the Finnish Diabetic Nephropathy (FinnDiane) prospective cohort study with serum sphingomyelin measured using a proton NMR metabolomics platform were included. Kidney disease progression was defined as change in eGFR or albuminuria stratum. Data on incident end-stage renal disease (ESRD) and CHD were retrieved from national registries. HRs from Cox regression models and regression coefficients from the logistic or linear regression analyses were reported per 1 SD increase in sphingomyelin level. In addition, receiver operating curves were used to assess whether sphingomyelin improves eGFR decline prediction compared with albuminuria. RESULTS: During a median (IQR) 10.7 (6.4, 13.5) years of follow-up, sphingomyelin was independently associated with the fastest eGFR decline (lowest 25%; median [IQR] for eGFR change: <-4.4 [-6.8, -3.1] ml min-1 [1.73 m-2] year-1), even after adjustment for classical lipid variables such as HDL-cholesterol and triacylglycerols (OR [95% CI]: 1.36 [1.15, 1.61], p < 0.001). Similarly, sphingomyelin increased the risk of progression to ESRD (HR [95% CI]: 1.53 [1.19, 1.97], p = 0.001). Moreover, sphingomyelin increased the risk of CHD (HR [95% CI]: 1.24 [1.01, 1.52], p = 0.038). However, sphingomyelin did not perform better than albuminuria in the prediction of eGFR decline. CONCLUSIONS/INTERPRETATION: This study demonstrates for the first time in a prospective setting that sphingomyelin is associated with the fastest eGFR decline and progression to ESRD in type 1 diabetes. In addition, sphingomyelin is a risk factor for CHD. These data suggest that high sphingomyelin level, independently of classical lipid risk factors, may contribute not only to the initiation and progression of kidney disease but also to CHD. Graphical abstract.
Subject(s)
Coronary Disease/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetic Nephropathies/metabolism , Sphingomyelins/metabolism , Adult , Albuminuria , Diabetes Complications/metabolism , Disease Progression , Female , Glomerular Filtration Rate , Humans , Logistic Models , Male , Middle Aged , Myocardial Infarction/metabolism , Myocardial Revascularization , Proportional Hazards Models , Proton Magnetic Resonance Spectroscopy , ROC CurveABSTRACT
AIMS/HYPOTHESIS: Plasma kallikrein is the central mediator of the plasma kallikrein-kinin system, which is involved both in vascular control and thrombin formation cascades. The plasma kallikrein-kinin system has also been considered protective in pathological conditions, but the impact of plasma kallikreins on diabetic nephropathy remains unknown. The objective of this cross-sectional study was to explore the association of plasma kallikrein with diabetic nephropathy. METHODS: We measured plasma kallikrein activity in 295 individuals with type 1 diabetes at various stages of diabetic nephropathy, and we tested the genetic association between the plasma kallikrein-kinin system and kidney function in 4400 individuals with type 1 diabetes. RESULTS: Plasma kallikrein activity was associated with diabetes duration (p < 0.001) and eGFR (p < 0.001), and plasma kallikrein activity was lower with more advanced diabetic nephropathy, being lowest in individuals on dialysis. The minor alleles of the KNG1 rs5030062 and rs710446 variants, which have previously been associated with increased plasma pre-kallikrein and/or factor XI (FXI) protein levels, were associated with higher eGFR (rs5030062 ß = 0.03, p = 0.01; rs710446 ß = 0.03, p = 0.005) in the FinnDiane cohort of 4400 individuals with type 1 diabetes. CONCLUSIONS/INTERPRETATION: Plasma kallikrein activity and genetic variants known to increase the plasma kallikrein level are associated with higher eGFR in individuals with type 1 diabetes, suggesting that plasma kallikrein might have a protective effect in diabetic nephropathy.
Subject(s)
Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/physiopathology , Kidney/metabolism , Plasma Kallikrein/metabolism , Adult , Cross-Sectional Studies , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/physiopathology , Factor XI/metabolism , Female , Genotyping Techniques , Glomerular Filtration Rate/physiology , Humans , Kidney/physiology , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Quality ControlABSTRACT
BACKGROUND: ABO blood groups have previously been associated with cardiovascular disease (CVD) in the general population. This study aimed to investigate the potential relationship between ABO blood groups and CVD in individuals with type 1 diabetes according to diabetic nephropathy (DN) status. METHODS: Adults with type 1 diabetes (4531 individuals) from the FinnDiane Study were evaluated. DN was determined by two out of three measurements of urinary albumin excretion rate. Albuminuria was defined as an excretion rate above 20 µg/min. CVD events were identified by linking the data with the Finnish Care Register for Health Care and the Finnish Cause of Death Register. Follow-up ranged from the baseline visit until a CVD event, death or the end of 2017. The impact of ABO blood groups on CVD risk was estimated by multivariable Cox-regression analyses adjusted for traditional risk factors. RESULTS: At baseline, the median age was 38.5 (IQR 29.2-47.9) years, 47.5% were female and median duration of diabetes was 20.9 (11.4-30.7) years. There were 893 incident ischemic heart disease (IHD) events, 301 ischemic strokes (IS), and 415 peripheral artery disease (PAD) events during a median follow up of 16.5 (IQR 12.8-18.6) years. The A blood group showed the highest risk of IHD versus the O blood group, when microalbuminuria was present. Comparing the population with microalbuminuria with those with normoalbuminuria, only the A blood group elevated the risk of IHD. This increased risk was neither explained by the FUT2 secretor phenotype nor by the A-genotype distribution. The risk of IS or PAD was no different among the ABO blood groups regardless of diabetic nephropathy stage. CONCLUSION: The A blood group is a risk factor for IHD in individuals with type 1 diabetes and microalbuminuria.
Subject(s)
ABO Blood-Group System , Albuminuria/blood , Cardiovascular Diseases/blood , Diabetes Mellitus, Type 1/blood , Diabetic Nephropathies/blood , Adult , Albuminuria/diagnosis , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/mortality , Cause of Death , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/mortality , Diabetic Nephropathies/diagnosis , Diabetic Nephropathies/mortality , Female , Finland/epidemiology , Humans , Male , Middle Aged , Prognosis , Prospective Studies , Registries , Risk Assessment , Risk Factors , Time FactorsABSTRACT
BACKGROUND: Individuals with type 1 diabetes (T1D) demonstrate varied trajectories of estimated glomerular filtration rate (eGFR) decline. The molecular pathways underlying rapid eGFR decline in T1D are poorly understood, and individual-level risk of rapid eGFR decline is difficult to predict. METHODS: We designed a case-control study with multiple exposure measurements nested within 4 well-characterized T1D cohorts (FinnDiane, Steno, EDC, and CACTI) to identify biomarkers associated with rapid eGFR decline. Here, we report the rationale for and design of these studies as well as results of models testing associations of clinical characteristics with rapid eGFR decline in the study population, upon which "omics" studies will be built. Cases (n = 535) and controls (n = 895) were defined as having an annual eGFR decline of ≥3 and <1 mL/min/1.73 m2, respectively. Associations of demographic and clinical variables with rapid eGFR decline were tested using logistic regression, and prediction was evaluated using area under the curve (AUC) statistics. Targeted metabolomics, lipidomics, and proteomics are being performed using high-resolution mass-spectrometry techniques. RESULTS: At baseline, the mean age was 43 years, diabetes duration was 27 years, eGFR was 94 mL/min/1.73 m2, and 62% of participants were normoalbuminuric. Over 7.6-year median follow-up, the mean annual change in eGFR in cases and controls was -5.7 and 0.6 mL/min/1.73 m2, respectively. Younger age, longer diabetes duration, and higher baseline HbA1c, urine albumin-creatinine ratio, and eGFR were significantly associated with rapid eGFR decline. The cross-validated AUC for the predictive model incorporating these variables plus sex and mean arterial blood pressure was 0.74 (95% CI: 0.68-0.79; p < 0.001). CONCLUSION: Known risk factors provide moderate discrimination of rapid eGFR decline. Identification of blood and urine biomarkers associated with rapid eGFR decline in T1D using targeted omics strategies may provide insight into disease mechanisms and improve upon clinical predictive models using traditional risk factors.
Subject(s)
Diabetes Mellitus, Type 1/complications , Diabetic Nephropathies/diagnosis , Glomerular Filtration Rate/physiology , Kidney Function Tests/methods , Adult , Biomarkers/analysis , Biomarkers/metabolism , Case-Control Studies , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/urine , Diabetic Nephropathies/blood , Diabetic Nephropathies/etiology , Diabetic Nephropathies/urine , Disease Progression , Female , Follow-Up Studies , Humans , Lipidomics/methods , Male , Middle Aged , Predictive Value of Tests , Proteomics/methods , ROC Curve , Risk FactorsABSTRACT
AIMS/HYPOTHESIS: Activation of the receptor for AGE (RAGE) has been shown to be associated with diabetic nephropathy. The soluble isoform of RAGE (sRAGE) is considered to function as a decoy receptor for RAGE ligands and thereby protects against diabetic complications. A possible association between sRAGE and diabetic nephropathy is still, however, controversial and a more comprehensive analysis of sRAGE with respect to diabetic nephropathy in type 1 diabetes is therefore warranted. METHODS: sRAGE was measured in baseline serum samples from 3647 participants with type 1 diabetes from the nationwide multicentre Finnish Diabetic Nephropathy (FinnDiane) Study. Associations between sRAGE and diabetic nephropathy, as well as sRAGE and diabetic nephropathy progression, were evaluated by regression, competing risks and receiver operating characteristic curve analyses. The non-synonymous SNP rs2070600 (G82S) was used to test causality in the Mendelian randomisation analysis. RESULTS: Baseline sRAGE concentrations were highest in participants with diabetic nephropathy, compared with participants with a normal AER or those with microalbuminuria. Baseline sRAGE was associated with progression from macroalbuminuria to end-stage renal disease (ESRD) in the competing risks analyses, but this association disappeared when eGFR was entered into the model. The SNP rs2070600 was strongly associated with sRAGE concentrations and with progression from macroalbuminuria to ESRD. However, Mendelian randomisation analysis did not support a causal role for sRAGE in progression to ESRD. CONCLUSIONS/INTERPRETATION: sRAGE is associated with progression from macroalbuminuria to ESRD, but does not add predictive value on top of conventional risk factors. Although sRAGE is a biomarker of diabetic nephropathy, in light of the Mendelian randomisation analysis it does not seem to be causally related to progression from macroalbuminuria to ESRD.
Subject(s)
Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Receptor for Advanced Glycation End Products/metabolism , Adult , Albuminuria/metabolism , Albuminuria/pathology , Disease Progression , Female , Finland , Glomerular Filtration Rate/physiology , Humans , Male , Middle Aged , Risk FactorsABSTRACT
AIMS/HYPOTHESIS: We aimed to identify a sparse panel of biomarkers for improving the prediction of renal disease progression in type 1 diabetes. METHODS: We considered 859 individuals recruited from the Scottish Diabetes Research Network Type 1 Bioresource (SDRNT1BIO) and 315 individuals from the Finnish Diabetic Nephropathy (FinnDiane) study. All had an entry eGFR between 30 and 75 ml min-1[1.73 m]-2, with those from FinnDiane being oversampled for albuminuria. A total of 297 circulating biomarkers (30 proteins, 121 metabolites, 146 tryptic peptides) were measured in non-fasting serum samples using the Luminex platform and LC electrospray tandem MS (LC-MS/MS). We investigated associations with final eGFR adjusted for baseline eGFR and with rapid progression (a loss of more than 3 ml min-1[1.73 m]-2 year-1) using linear and logistic regression models. Panels of biomarkers were identified using a penalised Bayesian approach, and their performance was evaluated through 10-fold cross-validation and compared with using clinical record data alone. RESULTS: For final eGFR, 16 proteins and 30 metabolites or tryptic peptides showed significant association in SDRNT1BIO, and nine proteins and five metabolites or tryptic peptides in FinnDiane, beyond age, sex, diabetes duration, study day eGFR and length of follow-up (all at p < 10-4). The strongest associations were with CD27 antigen (CD27), kidney injury molecule 1 (KIM-1) and α1-microglobulin. Including the Luminex biomarkers on top of baseline covariates increased the r2 for prediction of final eGFR from 0.47 to 0.58 in SDRNT1BIO and from 0.33 to 0.48 in FinnDiane. At least 75% of the increment in r2 was attributable to CD27 and KIM-1. However, using the weighted average of historical eGFR gave similar performance to biomarkers. The LC-MS/MS platform performed less well. CONCLUSIONS/INTERPRETATION: Among a large set of associated biomarkers, a sparse panel of just CD27 and KIM-1 contains most of the predictive information for eGFR progression. The increment in prediction beyond clinical data was modest but potentially useful for oversampling individuals with rapid disease progression into clinical trials, especially where there is little information on prior eGFR trajectories.
Subject(s)
Biomarkers/blood , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/pathology , Adult , Bayes Theorem , Chromatography, Liquid , Diabetic Nephropathies/blood , Diabetic Nephropathies/pathology , Disease Progression , Female , Glomerular Filtration Rate/physiology , Humans , Logistic Models , Male , Middle Aged , Tandem Mass SpectrometryABSTRACT
BACKGROUND: Hypertension is one of the strongest risk factors for stroke in the general population, while systolic blood pressure has been shown to independently increase the risk of stroke in type 1 diabetes. The aim of this study was to elucidate the association between different blood pressure variables and risk of stroke in type 1 diabetes, and to explore potential nonlinearity of this relationship. METHODS: We included 4105 individuals with type 1 diabetes without stroke at baseline, participating in the nationwide Finnish Diabetic Nephropathy Study. Mean age at baseline was 37.4 ± 11.9 years, median duration of diabetes 20.9 (interquartile range 11.5-30.4) years, and 52% were men. Office systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured. Based on these pulse pressure (PP) and mean arterial pressure (MAP) were calculated. Strokes were classified based on medical and autopsy records, as well as neuroimaging. Cox proportional hazard models were performed to study how the different blood pressure variables affected the risk of stroke and its subtypes. RESULTS: During median follow-up time of 11.9 (9.21-13.9) years, 202 (5%) individuals suffered an incident stroke; 145 (72%) were ischemic and 57 (28%) hemorrhagic. SBP, DBP, PP, and MAP all independently increased the risk of any stroke. SBP, PP, and MAP increased the risk of ischemic stroke, while SBP, DBP, and MAP increased the risk of hemorrhagic stroke. SBP was strongly associated with stroke with a hazard ratio of 1.20 (1.11-1.29)/10 mmHg. When variables were modeled using restricted cubic splines, the risk of stroke increased linearly for SBP, MAP, and PP, and non-linearly for DBP. CONCLUSIONS: The different blood pressure variables are all independently associated with increased risk of stroke in individuals with type 1 diabetes. The risk of stroke, ischemic stroke, and hemorrhagic stroke increases linearly at blood pressure levels less than the current recommended treatment guidelines.
Subject(s)
Blood Pressure , Brain Ischemia/epidemiology , Diabetes Mellitus, Type 1/epidemiology , Hypertension/epidemiology , Intracranial Hemorrhages/epidemiology , Stroke/epidemiology , Adult , Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects , Brain Ischemia/physiopathology , Brain Ischemia/urine , Diabetes Mellitus, Type 1/physiopathology , Diabetes Mellitus, Type 1/urine , Female , Finland/epidemiology , Humans , Hypertension/drug therapy , Hypertension/physiopathology , Hypertension/urine , Incidence , Intracranial Hemorrhages/physiopathology , Intracranial Hemorrhages/urine , Male , Middle Aged , Natriuresis , Potassium/urine , Prognosis , Renal Elimination , Risk Assessment , Risk Factors , Sodium/urine , Stroke/physiopathology , Stroke/urine , Time FactorsABSTRACT
AIMS/HYPOTHESIS: The aim of this study was to assess the potential dose-dependent effects of smoking on the risk of CHD, heart failure and stroke in individuals with type 1 diabetes. METHODS: The study included 4506 individuals with type 1 diabetes who were participating in the Finnish Diabetic Nephropathy (FinnDiane) study. Intensity of smoking was estimated by packs per day and cumulative smoking by pack-years. Cox regression analyses were used to estimate the risk of incident CHD, heart failure or stroke during follow-up. RESULTS: One pack per day significantly increased the risk of incident CHD in current smokers compared with never smokers (HR 1.45 [95% CI 1.15, 1.84]), after adjustment for age, sex, HbA1c, hypertension, duration of diabetes and BMI. The risk of CHD in former smokers was similar to the risk in never smokers. The risk of incident heart failure was 1.43 (95% CI 1.03, 1.97) in current smokers per one pack per day and 1.37 (95% CI 1.05, 1.77) in former smokers, while the risk of incident stroke was 1.70 (95% CI 1.26, 2.29) and 1.49 (95% CI 1.14, 1.93), respectively. After further adjustments for lipids, however, the difference in the risk of heart failure in current and former smokers was no longer significant. Cumulative smoking data were similar to smoking intensity data. CONCLUSIONS/INTERPRETATION: There is a dose-dependent association between smoking and cardiovascular disease in individuals with type 1 diabetes. In men in particular, the risk of incident stroke remains high even after smoking cessation and is increased in current and former smokers independently of other risk factors.
Subject(s)
Coronary Disease/epidemiology , Diabetes Mellitus, Type 1/epidemiology , Heart Failure/epidemiology , Smoking/adverse effects , Stroke/epidemiology , Adult , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Coronary Disease/etiology , Diabetes Mellitus, Type 1/physiopathology , Female , Heart Failure/etiology , Humans , Male , Middle Aged , Stroke/etiologyABSTRACT
AIMS/HYPOTHESIS: This study aimed to assess the use of ambulatory BP monitoring (ABPM) to identify the presence of masked, nocturnal and white-coat hypertension in individuals with type 1 diabetes, patterns that could not be detected by regular office-based BP monitoring alone. We also analysed associations between BP patterns and arterial stiffness in order to identify individuals at cardiovascular risk. METHODS: This substudy included 140 individuals with type 1 diabetes from the Helsinki metropolitan area, who attended the Finnish Diabetic Nephropathy Study (FinnDiane) Centre in Helsinki between January 2013 and August 2017. Twenty-four hour ABPM and pulse wave analysis were performed simultaneously using a validated non-invasive brachial oscillometric device (Mobil-O-Graph). Definitions of hypertension were based on the European Society of Hypertension guidelines. Masked hypertension was defined as normal office BP (BP obtained using a standardised automated BP device) but elevated 24 h ABPM, and white-coat hypertension as elevated office BP but normal 24 h ABPM. RESULTS: A total of 38% of individuals were normotensive and 33% had sustained hypertension, while 23% had masked and 6% had white-coat hypertension. About half of the cohort had increased absolute levels of night-time BP, half of whom were untreated. In the ambulatory setting, central BP and pulse wave velocity (PWV) were higher in participants with masked hypertension than in those with normotension (p ≤ 0.001). In a multivariable linear regression model adjusted for age, sex, BMI, antihypertensive treatment and eGFR, masked hypertension was independently associated with higher 24 h PWV (ß 0.50 [95% CI 0.34, 0.66]), but not with PWV obtained during resting conditions (adjusted ß 0.28 [95% CI -0.53, 1.10]), using normotension as the reference group. CONCLUSIONS/INTERPRETATION: ABPM analysis revealed that one-quarter of the participants with type 1 diabetes had masked hypertension; these individuals would not have been detected by office BP alone. Moreover, arterial stiffness was increased in individuals with masked hypertension. These findings support the use of ABPM to identify individuals at risk of cardiovascular disease.
Subject(s)
Blood Pressure , Diabetes Mellitus, Type 1/physiopathology , Vascular Stiffness , Adult , Antihypertensive Agents/therapeutic use , Blood Pressure Determination , Blood Pressure Monitoring, Ambulatory , Diabetic Nephropathies/complications , Female , Finland , Humans , Hypertension/complications , Male , Masked Hypertension , Middle Aged , Pulse Wave Analysis , Treatment OutcomeABSTRACT
AIMS/HYPOTHESIS: Our aim was to assess regression of albuminuria and its clinical consequences in type 1 diabetes. METHODS: The analysis included 3642 participants from the Finnish Diabetic Nephropathy (FinnDiane) Study with a 24 h urine sample and a history of albuminuria available at baseline. A total of 2729 individuals had normal AER, 438 a history of microalbuminuria and 475 a history of macroalbuminuria. Regression was defined as a change from a higher category of albuminuria pre-baseline to a lower category in two out of the three most recent urine samples at baseline. The impact of regression on cardiovascular events (myocardial infarction, stroke, coronary procedure) and mortality was analysed over a follow-up of 14.0 years (interquartile range 11.9-15.9). RESULTS: In total, 102 (23.3%) individuals with prior microalbuminuria and 111 (23.4%) with prior macroalbuminuria had regressed at baseline. For individuals with normal AER as a reference, the age-adjusted HRs (95% CI) for cardiovascular events were 1.42 (0.75, 2.68) in individuals with regression from microalbuminuria, 2.62 (1.95, 3.54) in individuals with sustained microalbuminuria, 3.15 (2.02, 4.92) in individuals with regression from macroalbuminuria and 5.49 (4.31, 7.00) in individuals with sustained macroalbuminuria. Furthermore, for all-cause and cardiovascular mortality rates, HRs in regressed individuals were comparable with those with sustained renal status at the achieved level (i.e. those who did not regress but remained at the most advanced level of albuminuria noted pre-baseline). CONCLUSIONS/INTERPRETATION: Progression of diabetic nephropathy confers an increased risk for cardiovascular disease and premature death. Notably, regression reduces the risk to the same level as for those who did not progress.
Subject(s)
Albuminuria/therapy , Cardiovascular Diseases/therapy , Diabetes Mellitus, Type 1/mortality , Diabetes Mellitus, Type 1/therapy , Adult , Albuminuria/mortality , Cardiovascular Diseases/complications , Cardiovascular Diseases/mortality , Cardiovascular Diseases/urine , Diabetes Mellitus, Type 1/complications , Diabetic Nephropathies/complications , Diabetic Nephropathies/mortality , Diabetic Nephropathies/therapy , Disease Progression , Female , Finland , Follow-Up Studies , Humans , Incidence , Male , Middle Aged , Risk Factors , Time Factors , Treatment OutcomeABSTRACT
AIMS: To determine the effect of different stages of diabetic nephropathy (DN) and sex on the excess and absolute morbidity of coronary artery disease (CAD) and stroke in people with type 1 diabetes (T1D) in order to distinguish different cardiovascular disease (CVD) risk profiles in people with T1D. MATERIALS AND METHODS: The study included 4410 people with T1D from the Finnish Diabetic Nephropathy Study (FinnDiane), divided by DN status, and a control population of 12 434 people without diabetes. CVD events were identified from the Finnish nationwide health registries. Cumulative incidences for CAD and stroke were calculated and standardized incidence ratios (SIRs) were estimated between participants with T1D and the control group, stratified by DN status and sex. RESULTS: There were 487 incident CADs and 290 strokes at the end of 2014 (median follow-up 12.9 years). The cumulative incidence rates of CAD and stroke were similar in men and women within different nephropathy groups. The SIR for CAD was 7.5 (95% confidence interval [CI] 6.9-8.2), 17.2 (95% CI 14.9-19.5) in women and 5.3 (95% CI 4.7-5.9) in men. The women-to-men ratio of SIR increased by nephropathy group: 3.3, 3.7, 5.3 and 6.8 in the normo-, micro- and macroalbuminuria and end-stage renal disease (ESRD) groups, respectively. The SIR for stroke was 5.0 (95% CI 4.3-5.5), similar in men and women. The women-to-men ratio of SIR for stroke was 0.8, 1.3, 1.6 and 1.7, in the normo-, micro- and macroalbuminuria and ESRD groups, respectively. The SIR in participants with normoalbuminuria and an estimated glomerular filtration rate ≥90 mL/min/1.73 m2 was 3.5 (95% CI 2.5-4.5) for CAD and 1.6 (95% CI 1.0-2.3) for stroke. CONCLUSIONS: Although the excess CVD risk is several-fold greater in women compared to men, the absolute CVD risk in men and women was equal when nephropathy was taken into account. Even participants with normoalbuminuria and normal kidney function were found to have an excess CVD risk compared with the control group without diabetes.
Subject(s)
Coronary Artery Disease/epidemiology , Diabetes Mellitus, Type 1/complications , Diabetic Nephropathies/complications , Sex Factors , Stroke/epidemiology , Adolescent , Adult , Age of Onset , Albuminuria/complications , Albuminuria/epidemiology , Child , Coronary Artery Disease/etiology , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/physiopathology , Diabetic Nephropathies/blood , Diabetic Nephropathies/physiopathology , Female , Finland/epidemiology , Glomerular Filtration Rate , Humans , Incidence , Kidney/physiopathology , Male , Prospective Studies , Registries , Risk Factors , Serum Albumin/analysis , Stroke/etiology , Young AdultABSTRACT
Glomerular epithelial cells, podocytes, are insulin responsive and can develop insulin resistance. Here, we demonstrate that the small GTPase septin 7 forms a complex with nonmuscle myosin heavy chain IIA (NMHC-IIA; encoded by MYH9), a component of the nonmuscle myosin IIA (NM-IIA) hexameric complex. We observed that knockdown of NMHC-IIA decreases insulin-stimulated glucose uptake into podocytes. Both septin 7 and NM-IIA associate with SNAP23, a SNARE protein involved in GLUT4 storage vesicle (GSV) docking and fusion with the plasma membrane. We observed that insulin decreases the level of septin 7 and increases the activity of NM-IIA in the SNAP23 complex, as visualized by increased phosphorylation of myosin regulatory light chain. Also knockdown of septin 7 increases the activity of NM-IIA in the complex. The activity of NM-IIA is increased in diabetic rat glomeruli and cultured human podocytes exposed to macroalbuminuric sera from patients with type 1 diabetes. Collectively, the data suggest that the activity of NM-IIA in the SNAP23 complex plays a key role in insulin-stimulated glucose uptake into podocytes. Furthermore, we observed that septin 7 reduces the activity of NM-IIA in the SNAP23 complex and thereby hinders GSV docking and fusion with the plasma membrane.
Subject(s)
Diabetes Mellitus, Type 1/metabolism , Diabetic Nephropathies/metabolism , Glucose Transporter Type 4/metabolism , Nonmuscle Myosin Type IIA/metabolism , Septins/metabolism , Transport Vesicles/metabolism , Vesicular Transport Proteins/metabolism , Animals , Epithelial Cells/metabolism , Glucose/metabolism , HEK293 Cells , Humans , Insulin/metabolism , Kidney Tubules/metabolism , Mice , Podocytes/metabolism , Rats , Septins/geneticsABSTRACT
The rate of decline of renal function varies significantly among individuals with CKD. To understand better the contribution of genetics to CKD progression, we performed a genome-wide association study among participants in the Chronic Renal Insufficiency Cohort Study. Our outcome of interest was CKD progression measured as change in eGFR over time among 1331 blacks and 1476 whites with CKD. We stratified all analyses by race and subsequently, diabetes status. Single-nucleotide polymorphisms (SNPs) that surpassed a significance threshold of P<1×10-6 for association with eGFR slope were selected as candidates for follow-up and secondarily tested for association with proteinuria and time to ESRD. We identified 12 such SNPs among black patients and six such SNPs among white patients. We were able to conduct follow-up analyses of three candidate SNPs in similar (replication) cohorts and eight candidate SNPs in phenotype-related (validation) cohorts. Among blacks without diabetes, rs653747 in LINC00923 replicated in the African American Study of Kidney Disease and Hypertension cohort (discovery P=5.42×10-7; replication P=0.039; combined P=7.42×10-9). This SNP also associated with ESRD (hazard ratio, 2.0 (95% confidence interval, 1.5 to 2.7); P=4.90×10-6). Similarly, rs931891 in LINC00923 associated with eGFR decline (P=1.44×10-4) in white patients without diabetes. In summary, SNPs in LINC00923, an RNA gene expressed in the kidney, significantly associated with CKD progression in individuals with nondiabetic CKD. However, the lack of equivalent cohorts hampered replication for most discovery loci. Further replication of our findings in comparable study populations is warranted.