Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 121(21): e2315513121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38739784

ABSTRACT

Mercury (Hg) is a heterogeneously distributed toxicant affecting wildlife and human health. Yet, the spatial distribution of Hg remains poorly documented, especially in food webs, even though this knowledge is essential to assess large-scale risk of toxicity for the biota and human populations. Here, we used seabirds to assess, at an unprecedented population and geographic magnitude and high resolution, the spatial distribution of Hg in North Atlantic marine food webs. To this end, we combined tracking data of 837 seabirds from seven different species and 27 breeding colonies located across the North Atlantic and Atlantic Arctic together with Hg analyses in feathers representing individual seabird contamination based on their winter distribution. Our results highlight an east-west gradient in Hg concentrations with hot spots around southern Greenland and the east coast of Canada and a cold spot in the Barents and Kara Seas. We hypothesize that those gradients are influenced by eastern (Norwegian Atlantic Current and West Spitsbergen Current) and western (East Greenland Current) oceanic currents and melting of the Greenland Ice Sheet. By tracking spatial Hg contamination in marine ecosystems and through the identification of areas at risk of Hg toxicity, this study provides essential knowledge for international decisions about where the regulation of pollutants should be prioritized.


Subject(s)
Feathers , Mercury , Animals , Mercury/analysis , Atlantic Ocean , Feathers/chemistry , Arctic Regions , Greenland , Environmental Monitoring/methods , Birds , Food Chain , Water Pollutants, Chemical/analysis , Ecosystem
2.
Proc Biol Sci ; 291(2015): 20231887, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38228179

ABSTRACT

Arctic birds and mammals are physiologically adapted to survive in cold environments but live in the fastest warming region on the planet. They should therefore be most threatened by climate change. We fitted a phylogenetic model of upper critical temperature (TUC) in 255 bird species and determined that TUC for dovekies (Alle alle; 22.4°C)-the most abundant seabird in the Arctic-is 8.8°C lower than predicted for a bird of its body mass (150 g) and habitat latitude. We combined our comparative analysis with in situ physiological measurements on 36 dovekies from East Greenland and forward-projections of dovekie energy and water expenditure under different climate scenarios. Based on our analyses, we demonstrate that cold adaptation in this small Arctic seabird does not handicap acute tolerance to air temperatures up to at least 15°C above their current maximum. We predict that climate warming will reduce the energetic costs of thermoregulation for dovekies, but their capacity to cope with rising temperatures will be constrained by water intake and salt balance. Dovekies evolved 15 million years ago, and their thermoregulatory physiology might also reflect adaptation to a wide range of palaeoclimates, both substantially warmer and colder than the present day.


Subject(s)
Charadriiformes , Ecosystem , Animals , Phylogeny , Charadriiformes/physiology , Birds , Climate Change , Mammals , Arctic Regions
3.
Conserv Biol ; : e14287, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38745504

ABSTRACT

In a warming Arctic, circumpolar long-term monitoring programs are key to advancing ecological knowledge and informing environmental policies. Calls for better involvement of Arctic peoples in all stages of the monitoring process are widespread, although such transformation of Arctic science is still in its infancy. Seabirds stand out as ecological sentinels of environmental changes, and priority has been given to implement the Circumpolar Seabird Monitoring Plan (CSMP). We assessed the representativeness of a pan-Arctic seabird monitoring network focused on the black-legged kittiwake (Rissa tridactyla) by comparing the distribution of environmental variables for all known versus monitored colonies. We found that with respect to its spatiotemporal coverage, this monitoring network does not fully embrace current and future environmental gradients. To improve the current scheme, we designed a method to identify colonies whose inclusion in the monitoring network will improve its ecological representativeness, limit logistical constraints, and improve involvement of Arctic peoples. We thereby highlight that inclusion of study sites in the Bering Sea, Siberia, western Russia, northern Norway, and southeastern Greenland could improve the current monitoring network and that their proximity to local populations might allow increased involvement of local communities. Our framework can be applied to improve existing monitoring networks in other ecoregions and sociological contexts.


Una red de monitoreo participativa y ecológica para las aves marinas del Ártico Resumen En un Ártico cada vez más cálido, los programas circumpolares de monitoreo a largo plazo son importantes para potenciar el conocimiento ecológico e informar las políticas ambientales. Existe un llamado generalizado para involucrar de mejor manera a los pueblos árticos en el proceso de monitoreo, aunque dicha transformación de la ciencia ártica todavía está en desarrollo. Las aves marinas resaltan como centinelas del cambio ambiental y se ha priorizado implementar el Plan Circumpolar de Monitoreo de Aves Marinas (CSMP). Comparamos la distribución de las variables ambientales de todas las colonias conocidas de la gaviota tridáctila (Rissa tridactyla) contra las colonias monitoreadas para evaluar la representación de una red pan­ártica de monitoreo enfocada en esta especie. Encontramos que esta red de monitoreo no considera del todo los gradientes ambientales actuales y futuros con respecto a la cobertura espaciotemporal. Para mejorar el esquema actual, diseñamos un método para identificar las colonias cuya inclusión en la red de monitoreo mejorará su representación ecológica, limitará las restricciones logísticas e incrementará la participación de los pueblos árticos. Por lo tanto, resaltamos que la inclusión de los sitios de estudio en el Mar de Bering, Siberia, Rusia occidental, el norte de Noruega y el sureste de Groenlandia mejorarían la red actual de monitoreo. También destacamos que la proximidad de los sitios de estudio con las poblaciones locales podría permitir una mayor participación de estas. Nuestro marco puede aplicarse para mejorar las redes de monitoreo existentes en otros contextos socioecológicos y ecoregiones.

4.
Glob Chang Biol ; 29(18): 5139-5168, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37381110

ABSTRACT

Organisms face energetic challenges of climate change in combination with suites of natural and anthropogenic stressors. In particular, chemical contaminant exposure has neurotoxic, endocrine-disrupting, and behavioral effects which may additively or interactively combine with challenges associated with climate change. We used a literature review across animal taxa and contaminant classes, but focused on Arctic endotherms and contaminants important in Arctic ecosystems, to demonstrate potential for interactive effects across five bioenergetic domains: (1) energy supply, (2) energy demand, (3) energy storage, (4) energy allocation tradeoffs, and (5) energy management strategies; and involving four climate change-sensitive environmental stressors: changes in resource availability, temperature, predation risk, and parasitism. Identified examples included relatively equal numbers of synergistic and antagonistic interactions. Synergies are often suggested to be particularly problematic, since they magnify biological effects. However, we emphasize that antagonistic effects on bioenergetic traits can be equally problematic, since they can reflect dampening of beneficial responses and result in negative synergistic effects on fitness. Our review also highlights that empirical demonstrations remain limited, especially in endotherms. Elucidating the nature of climate change-by-contaminant interactive effects on bioenergetic traits will build toward determining overall outcomes for energy balance and fitness. Progressing to determine critical species, life stages, and target areas in which transformative effects arise will aid in forecasting broad-scale bioenergetic outcomes under global change scenarios.

5.
Biol Lett ; 19(5): 20220583, 2023 05.
Article in English | MEDLINE | ID: mdl-37254521

ABSTRACT

Many species in aquatic environments face increased exposure to oncogenic pollution due to anthropogenic environmental change which can lead to higher cancer prevalence. The mechanistic relationship connecting environmental pollution and cancer is multi-factorial and poorly understood, and the specific mechanisms are so far still uncharacterized. One potential mediator between pollutant exposure and cancer is oxidative damage to DNA. We conducted a study in the field with two flatfish species, European flounder (Platichthys flesus L.) and common dab (Limanda limanda L.) with overlapping distribution and similar ecological niche, to investigate if the link between oncogenic pollutants and cancer described in ecotoxicological literature could be mediated by oxidative DNA damage. This was not the case for flounders as neither polycyclic aromatic hydrocarbon (PAH) bile metabolites nor metallic trace element concentrations were related to oxidative DNA damage measurements. However, dabs with higher PAH concentrations did exhibit increased oxidative damage. High oxidative DNA damage also did not predict neoplasm occurrence, rather, healthy individuals tended to have higher oxidative damage measurements compared to fishes with pre-neoplastic tumours. Our analyses showed that flounders had lower concentrations of PAH bile metabolites, suggesting that compared to dab this species is less exposed or better at eliminating these contaminants.


Subject(s)
Flounder , Liver Neoplasms , Polycyclic Aromatic Hydrocarbons , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Environmental Monitoring , Bile/chemistry , Bile/metabolism , Oxidative Stress , Polycyclic Aromatic Hydrocarbons/toxicity , Polycyclic Aromatic Hydrocarbons/analysis , Polycyclic Aromatic Hydrocarbons/metabolism , Liver Neoplasms/chemically induced , Liver Neoplasms/veterinary , Liver Neoplasms/metabolism , DNA Damage
6.
Environ Sci Technol ; 57(5): 2054-2063, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36652233

ABSTRACT

Combined effects of multiple, climate change-associated stressors are of mounting concern, especially in Arctic ecosystems. Elevated mercury (Hg) exposure in Arctic animals could affect behavioral responses to changes in foraging landscapes caused by climate change, generating interactive effects on behavior and population resilience. We investigated this hypothesis in little auks (Alle alle), a keystone Arctic seabird. We compiled behavioral data for 44 birds across 5 years using accelerometers while also quantifying blood Hg and environmental conditions. Warm sea surface temperature (SST) and low sea ice coverage reshaped time activity budgets (TABs) and diving patterns, causing decreased resting, increased flight, and longer dives. Mercury contamination was not associated with TABs. However, highly contaminated birds lengthened interdive breaks when making long dives, suggesting Hg-induced physiological limitations. As dive durations increased with warm SST, subtle toxicological effects threaten to increasingly constrain diving and foraging efficiency as climate change progresses, with ecosystem-wide repercussions.


Subject(s)
Charadriiformes , Mercury , Animals , Ecosystem , Climate Change , Mercury/analysis , Arctic Regions , Birds , Environmental Monitoring
7.
Environ Res ; 238(Pt 1): 117066, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37660878

ABSTRACT

Sea ice plays a fundamental role in Arctic marine environments, by driving primary productivity and sustaining ice-associated ecosystems. Simultaneously, sea ice influences the contamination of Arctic marine organisms, by modifying contaminant cycles or their bioavailability. Changes in sea ice conditions could therefore profoundly impact the functioning of Arctic marine food webs and their contamination. Top predators such as seabirds, which are subject to bioaccumulation and biomagnification of contaminants, are particularly exposed. In this context, the present study aims to investigate the influence of sea ice and of the use of ice-derived resources on the contamination of seabirds by mercury (Hg). To this end, eggs of thick-billed murres (Brünnich's guillemots, Uria lomvia; n = 60) were collected on Prince Leopold Island (Canadian High Arctic) during four years of varying ice conditions (2010-2013). Trophic tracers (i.e., Highly Branched Isoprenoids, HBIs - an indicator of the use of ice-derived resources; carbon and nitrogen stable isotopes - indicators of foraging habitats and trophic status), as well as total Hg concentrations were quantified. Results showed that feeding on ice-derived resources (as indicated by HBI concentrations) was positively correlated to sea ice cover, and both positively influenced Hg concentrations in murre eggs. However, when testing for the best predictor with model selection, sea ice concentration only drove Hg contamination in murres. This work provides new insights into the role of sea ice and ice-derived resources in the contamination by Hg of Arctic wildlife. Further research is now needed to better understand the relationship between sea ice and Hg contamination in Arctic biota and its underlying mechanisms, but also to identify Hg sources in rapidly changing environmental conditions in the Arctic.


Subject(s)
Charadriiformes , Mercury , Animals , Ecosystem , Mercury/analysis , Canada , Environmental Monitoring , Arctic Regions , Food Chain , Nitrogen Isotopes
8.
Gen Comp Endocrinol ; 337: 114261, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36907529

ABSTRACT

Global climate change is causing abiotic shifts such as higher air and ocean temperatures, and disappearing sea ice in Arctic ecosystems. These changes influence Arctic-breeding seabird foraging ecology by altering prey availability and selection, affecting individual body condition, reproductive success, and exposure to contaminants such as mercury (Hg). The cumulative effects of alterations to foraging ecology and Hg exposure may interactively alter the secretion of key reproductive hormones such as prolactin (PRL), important for parental attachment to eggs and offspring and overall reproductive success. However, more research is needed to investigate the relationships between these potential links. Using data collected from 106 incubating female common eiders (Somateria mollissima) at six Arctic and sub-Arctic colonies, we examined whether the relationship between individual foraging ecology (assessed using δ13C, δ15N) and total Hg (THg) exposure predicted PRL levels. We found a significant, complex interaction between δ13C, δ15N and THg on PRL, suggesting that individuals cumulatively foraging at lower trophic levels, in phytoplankton-dominant environments, and with the highest THg levels had the most constant significant relationship PRL levels. Cumulatively, these three interactive variables resulted in lowered PRL. Overall, results demonstrate the potential downstream and cumulative implications of environmentally induced changes in foraging ecology, in combination with THg exposure, on hormones known to influence reproductive success in seabirds. These findings are notable in the context of continuing environmental and food web changes in Arctic systems, which may make seabird populations more susceptible to ongoing stressors.


Subject(s)
Ecosystem , Mercury , Humans , Animals , Female , Parenting , Ducks , Food Chain , Aquatic Organisms , Arctic Regions , Hormones , Environmental Monitoring/methods
9.
Ecotoxicology ; 32(8): 1024-1049, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37878111

ABSTRACT

Due to its persistence and potential ecological and health impacts, mercury (Hg) is a global pollutant of major concern that may reach high concentrations even in remote polar oceans. In contrast to the Arctic Ocean, studies documenting Hg contamination in the Southern Ocean are spatially restricted and large-scale monitoring is needed. Here, we present the first circumpolar assessment of Hg contamination in Antarctic marine ecosystems. Specifically, the Adélie penguin (Pygoscelis adeliae) was used as a bioindicator species, to examine regional variation across 24 colonies distributed across the entire Antarctic continent. Mercury was measured on body feathers collected from both adults (n = 485) and chicks (n = 48) between 2005 and 2021. Because penguins' diet represents the dominant source of Hg, feather δ13C and δ15N values were measured as proxies of feeding habitat and trophic position. As expected, chicks had lower Hg concentrations (mean ± SD: 0.22 ± 0.08 µg·g‒1) than adults (0.49 ± 0.23 µg·g‒1), likely because of their shorter bioaccumulation period. In adults, spatial variation in feather Hg concentrations was driven by both trophic ecology and colony location. The highest Hg concentrations were observed in the Ross Sea, possibly because of a higher consumption of fish in the diet compared to other sites (krill-dominated diet). Such large-scale assessments are critical to assess the effectiveness of the Minamata Convention on Mercury. Owing to their circumpolar distribution and their ecological role in Antarctic marine ecosystems, Adélie penguins could be valuable bioindicators for tracking spatial and temporal trends of Hg across Antarctic waters in the future.


Subject(s)
Mercury , Spheniscidae , Animals , Mercury/analysis , Ecosystem , Environmental Biomarkers , Antarctic Regions , Environmental Monitoring
10.
J Environ Manage ; 342: 118131, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37210816

ABSTRACT

EU member countries and the UK are currently installing numerous offshore windfarms (OWFs) in the Baltic and North Seas to achieve decarbonization of their energy systems. OWFs may have adverse effects on birds; however, estimates of collision risks and barrier effects for migratory species are notably lacking, but are essential to inform marine spatial planning. We therefore compiled an international dataset consisting of 259 migration tracks for 143 Global Positioning System-tagged Eurasian curlews (Numenius arquata arquata) from seven European countries recorded over 6 years, to assess individual response behaviors when approaching OWFs in the North and Baltic Seas at two different spatial scales (i.e. up to 3.5 km and up to 30 km distance). Generalized additive mixed models revealed a significant small-scale increase in flight altitudes, which was strongest at 0-500 m from the OWF and which was more pronounced during autumn than during spring, due to higher proportions of time spent migrating at rotor level. Furthermore, four different small-scale integrated step selection models consistently detected horizontal avoidance responses in about 70% of approaching curlews, which was strongest at approximately 450 m from the OWFs. No distinct, large-scale avoidance effects were observed on the horizontal plane, although they could possibly have been confounded by changes in flight altitudes close to land. Overall, 28.8% of the flight tracks crossed OWFs at least once during migration. Flight altitudes within the OWFs overlapped with the rotor level to a high degree in autumn (50%) but to a significantly lesser extent in spring (18.5%). Approximately 15.8% and 5.8% of the entire curlew population were estimated to be at increased risk during autumn and spring migration, respectively. Our data clearly show strong small-scale avoidance responses, which are likely to reduce collision risk, but simultaneously highlight the substantial barrier effect of OWFs for migrating species. Although alterations in flight paths of curlews due to OWFs seem to be moderate with respect to the overall migration route, there is an urgent need to quantify the respective energetic costs, given the massive ongoing construction of OWFs in both sea areas.


Subject(s)
Charadriiformes , Wind , Animals , Birds/physiology , Seasons , Telemetry , Animal Migration
11.
J Exp Biol ; 225(12)2022 06 15.
Article in English | MEDLINE | ID: mdl-35593255

ABSTRACT

Accelerometry has been widely used to estimate energy expenditure in a broad array of terrestrial and aquatic species. However, a recent reappraisal of the method showed that relationships between dynamic body acceleration (DBA) and energy expenditure weaken as the proportion of non-mechanical costs increases. Aquatic air breathing species often exemplify this pattern, as buoyancy, thermoregulation and other physiological mechanisms disproportionately affect oxygen consumption during dives. Combining biologging with the doubly labelled water method, we simultaneously recorded daily energy expenditure (DEE) and triaxial acceleration in one of the world's smallest wing-propelled breath-hold divers, the dovekie (Alle alle). These data were used to estimate the activity-specific costs of flying and diving and to test whether overall dynamic body acceleration (ODBA) is a reliable predictor of DEE in this abundant seabird. Average DEE for chick-rearing dovekies was 604±119 kJ day-1 across both sampling years. Despite recording lower stroke frequencies for diving than for flying (in line with allometric predictions for auks), dive costs were estimated to surpass flight costs in our sample of birds (flying: 7.24× basal metabolic rate, BMR; diving: 9.37× BMR). As expected, ODBA was not an effective predictor of DEE in this species. However, accelerometer-derived time budgets did accurately estimate DEE in dovekies. This work represents an empirical example of how the apparent energetic costs of buoyancy and thermoregulation limit the effectiveness of ODBA as the sole predictor of overall energy expenditure in small shallow-diving endotherms.


Subject(s)
Charadriiformes , Diving , Acceleration , Animals , Birds/physiology , Diving/physiology , Energy Metabolism/physiology , Oxygen Consumption
12.
J Anim Ecol ; 91(9): 1813-1825, 2022 09.
Article in English | MEDLINE | ID: mdl-35681266

ABSTRACT

Seasonal variability is one of the main drivers of seasonal movements like migration. The literature has suggested that bird migration is often driven by poor environmental conditions during one season and permits avoidance of resource shortage or harsh weather by tracking the more favourable conditions. We tested at the global scale, and focusing on seabirds, whether this pattern exists in the marine realm. Specifically, we tested the hypothesis that seabird migration permits achieving stability in niche occupancy, and that it is triggered by seasonal variations in niche availability. We collated data on monthly presence of species over marine ecoregions from literature and expert knowledge. First, we quantified niche occupancy during breeding and non-breeding periods from environmental conditions encountered in ecoregions in which species were present at each periods and compared seasonal dynamics across migratory strategies. Second, we quantified the seasonal niche dynamics from simulated residency in breeding and non-breeding grounds to quantify the seasonality in niche availability and to test its effect on seabird migratory strategies. We demonstrated that all seabirds are niche trackers, yet resident and dispersive seabirds displayed higher levels of niche tracking throughout the year, regardless of the environmental seasonality, while migrants exhibited more divergent seasonal niches. In most cases, migratory status was not related to the unavailability of favourable conditions at the breeding or non-breeding grounds, suggesting that the availability of the favourable niche is not the main driver of migration. We hypothesise that this unexpected pattern might arise from strong constraints imposed on seabirds by the scarcity of suitable breeding sites which constrain the range of environments available for optimising reproductive success. This work sheds new light on the ecological drivers of migration.


Subject(s)
Animal Migration , Birds , Animals , Reproduction , Seasons
13.
Glob Chang Biol ; 27(7): 1457-1469, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33347684

ABSTRACT

We explored the implications of reaching the Paris Agreement Objective of limiting global warming to <2°C for the future winter distribution of the North Atlantic seabird community. We predicted and quantified current and future winter habitats of five North Atlantic Ocean seabird species (Alle alle, Fratercula arctica, Uria aalge, Uria lomvia and Rissa tridactyla) using tracking data for ~1500 individuals through resource selection functions based on mechanistic modeling of seabird energy requirements, and a dynamic bioclimate envelope model of seabird prey. Future winter distributions were predicted to shift with climate change, especially when global warming exceed 2°C under a "no mitigation" scenario, modifying seabird wintering hotspots in the North Atlantic Ocean. Our findings suggest that meeting Paris agreement objectives will limit changes in seabird selected habitat location and size in the North Atlantic Ocean during the 21st century. We thereby provide key information for the design of adaptive marine-protected areas in a changing ocean.


Subject(s)
Climate Change , Ecosystem , Animals , Atlantic Ocean , Humans , Paris , Seasons
14.
Biol Lett ; 17(9): 20210331, 2021 09.
Article in English | MEDLINE | ID: mdl-34547216

ABSTRACT

Precise timing of migration is crucial for animals targeting seasonal resources at locations encountered across their annual cycle. Upon departure, long-distance migrants need to anticipate unknown environmental conditions at their arrival site, and they do so with their internal annual clock. Here, we tested the hypothesis that long-distance migrants synchronize their circannual clock according to the phenology of their environment during the breeding season and therefore adjust their spring departure date according to the conditions encountered at their breeding site the year before. To this end, we used tracking data of Eurasian curlews from different locations and combined movement data with satellite-extracted green-up dates at their breeding site. The spring departure date was better explained by green-up date of the previous year, while arrival date at the breeding site was better explained by latitude and longitude of the breeding site, suggesting that other factors impacted migration timing en route. On a broader temporal scale, our results suggest that long-distance migrants may be able to adjust their migration timing to advancing spring dates in the context of climate change.


Subject(s)
Animal Migration , Climate Change , Animals , Movement , Seasons
15.
Environ Res ; 193: 110518, 2021 02.
Article in English | MEDLINE | ID: mdl-33245882

ABSTRACT

Understanding the drivers and effects of exposure to contaminants such as mercury (Hg) and organochlorine compounds (OCs) in Antarctic wildlife is still limited. Yet, Hg and OCs have known physiological and fitness effects in animals, with consequences on their populations. Here we measured total Hg (a proxy of methyl-Hg) in blood cells and feathers, and 12 OCs (seven polychlorinated biphenyls, PCBs, and five organochlorine pesticides, OCPs) in plasma of 30 breeding female Antarctic petrels Thalassoica antarctica from one of the largest colonies in Antarctica (Svarthamaren, Dronning Maud Land). This colony is declining and there is poor documentation on the potential role played by contaminants on individual physiology and fitness. Carbon (δ13C) and nitrogen (δ15N) stable isotope values measured in the females' blood cells and feathers served as proxies of their feeding ecology during the pre-laying (austral spring) and moulting (winter) periods, respectively. We document feather Hg concentrations (mean ± SD, 2.41 ± 0.83 µg g-1 dry weight, dw) for the first time in this species. Blood cell Hg concentrations (1.38 ± 0.43 µg g-1 dw) were almost twice as high as those reported in a recent study, and increased with pre-laying trophic position (blood cell δ15N). Moulting trophic ecology did not predict blood Hg concentrations. PCB concentrations were very low (Σ7PCBs, 0.35 ± 0.31 ng g-1 wet weight, ww). Among OCPs, HCB (1.02 ± 0.36 ng g-1 ww) and p, p'-DDE (1.02 ± 1.49 ng g-1 ww) residues were comparable to those of ecologically-similar polar seabirds, while Mirex residues (0.72 ± 0.35 ng g-1 ww) were higher. PCB and OCP concentrations showed no clear relationship with pre-laying or moulting feeding ecology, indicating that other factors overcome dietary drivers. OC residues were inversely related to body condition, suggesting stronger release of OCs into the circulation of egg-laying females upon depletion of their lipid reserves. Egg volume, hatching success, chick body condition and survival were not related to maternal Hg or OC concentrations. Legacy contaminant exposure does not seem to represent a threat for the breeding fraction of this population over the short term. Yet, exposure to contaminants, especially Mirex, and other concurring environmental stressors should be monitored over the long-term in this declining population.


Subject(s)
Hydrocarbons, Chlorinated , Mercury , Polychlorinated Biphenyls , Animals , Antarctic Regions , Birds , Environmental Monitoring , Female , Hydrocarbons, Chlorinated/analysis , Mercury/analysis , Polychlorinated Biphenyls/analysis
16.
Environ Sci Technol ; 54(21): 13619-13629, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33063513

ABSTRACT

Despite the limited direct anthropogenic mercury (Hg) inputs in the circumpolar Arctic, elevated concentrations of methylmercury (MeHg) are accumulated in Arctic marine biota. However, the MeHg production and bioaccumulation pathways in these ecosystems have not been completely unraveled. We measured Hg concentrations and stable isotope ratios of Hg, carbon, and nitrogen in the feathers and blood of geolocator-tracked little auk Alle alle from five Arctic breeding colonies. The wide-range spatial mobility and tissue-specific Hg integration times of this planktivorous seabird allowed the exploration of their spatial (wintering quarters/breeding grounds) and seasonal (nonbreeding/breeding periods) MeHg exposures. An east-to-west increase of head feather Hg concentrations (1.74-3.48 µg·g-1) was accompanied by significant spatial trends of Hg isotope (particularly Δ199Hg: 0.96-1.13‰) and carbon isotope (δ13C: -20.6 to -19.4‰) ratios. These trends suggest a distinct mixing/proportion of MeHg sources between western North Atlantic and eastern Arctic regions. Higher Δ199Hg values (+0.4‰) in northern colonies indicate an accumulation of more photochemically impacted MeHg, supporting shallow MeHg production and bioaccumulation in high Arctic waters. The combination of seabird tissue isotopic analysis and spatial tracking helps in tracing the MeHg sources at various spatio-temporal scales.


Subject(s)
Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Arctic Regions , Ecosystem , Environmental Monitoring , Food Chain , Mercury/analysis , Seasons , Water Pollutants, Chemical/analysis
17.
Environ Res ; 177: 108588, 2019 10.
Article in English | MEDLINE | ID: mdl-31382127

ABSTRACT

Mercury (Hg), because of its deleterious effects on wildlife and its high concentrations in polar regions, has been widely studied in the Arctic. This provided important information regarding food web contamination, spatial and temporal trends of Hg in ecosystems or risk assessments for wildlife and Humans. Among the Arctic biota, seabirds have been among the most studied species due to their sensitivity to this toxicant, their role as bioindicators of the contamination status of their environment, and their consumption by Arctic communities. However, most studies that investigated Hg in Arctic seabirds focused on measurements in internal organs or in eggs, while few investigations have been performed on blood and feathers, despite the relevant and complementary information they provide. Here, we first provide a detailed overview of the specific information blood and feathers can bring when investigating Hg contamination of Arctic seabirds, including new knowledge on the poorly studied non-breeding period. Second, we perform a comprehensive review of the use of blood and feathers as non-lethal tissues to study Hg in Arctic seabirds. This review demonstrates important interspecific variations in Hg blood concentrations according to seabird trophic status, with seaducks generally presenting the lowest Hg concentrations while auks have the highest ones. However, all the observed Hg concentrations are below the admitted toxicity thresholds. Hg concentrations in feathers follow similar trends and gulls appear to be the most contaminated species, likely as a consequence of contrasting migratory and overwintering strategies. This review also confirms strong spatial variations with higher concentrations found in the Canadian Arctic and Pacific waters than in Greenland and the European Arctic. It also identifies some major understudied areas such as West Greenland, Aleutian Islands and Russia. Finally, we provide a thorough review of the current knowledge regarding molting patterns in Arctic seabirds, which is an essential information to interpret Hg concentrations measured in feathers. Overall, our results point out the importance of blood and feathers in seabird ecotoxicological assessments and highlight the need for large scale international collaborations and research programs.


Subject(s)
Birds , Environmental Monitoring , Environmental Pollutants/metabolism , Feathers/metabolism , Mercury/metabolism , Alaska , Animals , Arctic Regions , Canada , Ecosystem , Greenland , Russia
18.
Ecol Lett ; 21(7): 1043-1054, 2018 07.
Article in English | MEDLINE | ID: mdl-29659122

ABSTRACT

Spatio-temporally stable prey distributions coupled with individual foraging site fidelity are predicted to favour individual resource specialisation. Conversely, predators coping with dynamic prey distributions should diversify their individual diet and/or shift foraging areas to increase net intake. We studied individual specialisation in Scopoli's shearwaters (Calonectris diomedea) from the highly dynamic Western Mediterranean, using daily prey distributions together with resource selection, site fidelity and trophic-level analyses. As hypothesised, we found dietary diversification, low foraging site fidelity and almost no individual specialisation in resource selection. Crucially, shearwaters switched daily foraging tactics, selecting areas with contrasting prey of varying trophic levels. Overall, information use and plastic resource selection of individuals with reduced short-term foraging site fidelity allow predators to overcome prey field lability. Our study is an essential step towards a better understanding of individual responses to enhanced environmental stochasticity driven by global changes, and of pathways favouring population persistence.


Subject(s)
Birds , Diet , Animals , Ecosystem , Predatory Behavior
19.
J Exp Biol ; 221(Pt 13)2018 07 01.
Article in English | MEDLINE | ID: mdl-29844199

ABSTRACT

Little auks (Alle alle) are one of the most numerous seabird species in the world and feed primarily on copepods in arctic waters. Their high daily energy requirements leave them vulnerable to current changes in the arctic plankton community, where a smaller, less-profitable copepod species (Calanus finmarchicus) becomes increasingly abundant. Little auks have been estimated to require ∼60,000 copepods per day, necessitating prey capture rates of ∼6 copepods per second underwater. To achieve such performance, it has been suggested that little auks capture their prey by (non-visual) filter feeding. We tested this hypothesis by exposing little auks to varying copepod densities within a shallow experimental pool and filming their prey capture behaviour. At none of the copepod densities tested did birds filter feed. Instead, all birds captured copepods by what we identified as visually guided suction feeding, achieved through an extension of their sub-lingual pouch. Suction feeding is very common in fish and marine mammals, but to the best of our knowledge, this is the first time that it has been specifically identified in a seabird species. While presumably less efficient than filter feeding, this behaviour may allow little auks to foster higher resilience when facing the consequences of arctic climate change.


Subject(s)
Charadriiformes/physiology , Copepoda , Feeding Behavior/physiology , Food Chain , Animals , Climate Change , Population Density , Suction
20.
Glob Chang Biol ; 21(3): 1116-23, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25639886

ABSTRACT

Arctic climate change has profound impacts on the cryosphere, notably via shrinking sea-ice cover and retreating glaciers, and it is essential to evaluate and forecast the ecological consequences of such changes. We studied zooplankton-feeding little auks (Alle alle), a key sentinel species of the Arctic, at their northernmost breeding site in Franz-Josef Land (80°N), Russian Arctic. We tested the hypothesis that little auks still benefit from pristine arctic environmental conditions in this remote area. To this end, we analysed remote sensing data on sea-ice and coastal glacier dynamics collected in our study area across 1979-2013. Further, we recorded little auk foraging behaviour using miniature electronic tags attached to the birds in the summer of 2013, and compared it with similar data collected at three localities across the Atlantic Arctic. We also compared current and historical data on Franz-Josef Land little auk diet, morphometrics and chick growth curves. Our analyses reveal that summer sea-ice retreated markedly during the last decade, leaving the Franz-Josef Land archipelago virtually sea-ice free each summer since 2005. This had a profound impact on little auk foraging, which lost their sea-ice-associated prey. Concomitantly, large coastal glaciers retreated rapidly, releasing large volumes of melt water. Zooplankton is stunned by cold and osmotic shock at the boundary between glacier melt and coastal waters, creating new foraging hotspots for little auks. Birds therefore switched from foraging at distant ice-edge localities, to highly profitable feeding at glacier melt-water fronts within <5 km of their breeding site. Through this behavioural plasticity, little auks maintained their chick growth rates, but showed a 4% decrease in adult body mass. Our study demonstrates that arctic cryosphere changes may have antagonistic ecological consequences on coastal trophic flow. Such nonlinear responses complicate modelling exercises of current and future polar ecosystem dynamics.


Subject(s)
Charadriiformes/physiology , Climate Change , Feeding Behavior , Animals , Arctic Regions , Charadriiformes/anatomy & histology , Charadriiformes/growth & development , Ice Cover , Models, Biological , Nonlinear Dynamics , Remote Sensing Technology , Russia
SELECTION OF CITATIONS
SEARCH DETAIL