Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Phys Med Biol ; 69(8)2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38252970

ABSTRACT

Objective. Ionization chambers, mostly used for beam calibration and for reference dosimetry, can show high recombination effects in pulsed high dose rate proton beams. The aims of this paper are: first, to characterize the linearity response of newly designed asymmetrical beam monitor chambers (ABMC) in a 100-226 MeV pulsed high dose rate per pulse scanned proton beam; and secondly, to calibrate the ABMC with a PPC05 (IBA Dosimetry) plane parallel ionization chamber and compare to calibration with a home-made Faraday cup (FC).Approach. The ABMC response linearity was evaluated with both the FC and a PTW 60019 microDiamond detector. Regarding ionometry-based ABMC calibration, recombination factors were evaluated theoretically, then numerically, and finally experimentally measured in water for a plane parallel ionization chamber PPC05 (IBA Dosimetry) throughkssaturation curves. Finally, ABMC calibration was also achieved with FC and compared to the ionometry method for 7 energies.Main results. Linearity measurements showed that recombination losses in the new ABMC design were well taken into account for the whole range of the machine dose rates. The two-voltage-method was not suitable for recombination correction, but Jaffé's plots analysis was needed, emphasizing the current IAEA TRS-398 reference protocol limitations. Concerning ABMC calibration, FC based absorbed dose estimation and PPC05-based absorbed dose estimation differ by less than 6.3% for the investigated energies.Significance.So far, no update on reference dosimetry protocols is available to estimate the absorbed dose in ionization chambers for clinical high dose rate per pulse pulsed scanned proton beams. This work proposes a validation of the new ABMC design, a method to take into account the recombination effect for ionometry-based ABMC calibration and a comparison with FC dose estimation in this type of proton beams.


Subject(s)
Protons , Radioactivity , Cyclotrons , Calibration , Radiometry/methods , Water
2.
Phys Med ; 80: 243-250, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33202363

ABSTRACT

PURPOSE: To evaluate the flat-panel detector quenching effect and clinical usability of a flat-panel based compact QA device for PBS daily constancy measurements. MATERIALS & METHOD: The QA device, named Sphinx Compact, is composed of a 20x20 cm2 flat-panel imager mounted on a portable frame with removable plastic modules for constancy checks of proton energy (100 MeV, 150 MeV, 200 MeV), Spread-Out-Bragg-Peak (SOBP) profile, and machine output. The potential quenching effect of the flat-panel detector was evaluated. Daily PBS QA tests of X-ray/proton isocenter coincidence, the constancy of proton spot position and sigma as well as the energy of pristine proton beam, and the flatness of SOBP proton beam through the 'transformed' profile were performed and analyzed. Furthermore, the sensitivity of detecting energy changes of pristine proton beam was also evaluated. RESULTS: The quenching effect was observed at depths near the pristine peak regions. The flat-panel measured range of the distal 80% is within 0.9 mm to the defined ranges of the delivered proton beams. X-ray/proton isocenter coincidence tests demonstrated maximum mismatch of 0.3 mm between the two isocenters. The device can detect 0.1 mm change of spot position and 0.1 MeV energy changes of pristine proton beams. The measured transformed SOBP beam profile through the wedge module rendered as flat. CONCLUSIONS: Even though the flat-panel detector exhibited quenching effect at the Bragg peak region, the proton range can still be accurately measured. The device can fulfill the requirements of the daily QA tests recommended by the AAPM TG224 Report.


Subject(s)
Proton Therapy , Protons
3.
J Nucl Med Technol ; 37(3): 179-87, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19726808

ABSTRACT

UNLABELLED: The aim of this study was to compare the performance of filtered backprojection (FBP) and ordered-subset expectation maximization (OSEM) reconstruction algorithms available in several types of commercial SPECT software. METHODS: Numeric simulations of SPECT acquisitions of 2 phantoms were used: the National Electrical Manufacturers Association line phantom used for the assessment of SPECT resolution and a phantom with uniform, hot-rod, and cold-rod compartments. For FBP, no filtering and filtering of the projections with either a Butterworth filter (order 3 or 6) or a Hanning filter at various cutoff frequencies were considered. For OSEM, the number of subsets was 1, 4, 8, or 16, and the number of iterations was chosen to obtain a product number of iterations times the number of subsets equal to 16, 32, 48, or 64. The line phantom enabled us to obtain the reconstructed central, radial, and tangential full width at half maximum. The uniform compartment of the second phantom delivered the reconstructed mean pixel counts and SDs from which the coefficients of variation were calculated. Hot contrast and cold contrast were obtained from its rod compartments. RESULTS: For FBP, the full width at half maximum, mean pixel count, coefficient of variation, and contrast were almost software independent. The only exceptions were a smaller (by 0.5 mm) full width at half maximum for one of the software types, higher mean pixel counts for 2 of the software types, and better contrast for 2 of the software types under some filtering conditions. For OSEM, the full width at half maximum differed by 0.1-2.5 mm with the different types of software but was almost independent of the number of subsets or iterations. There was a marked dependence of the mean pixel count on the type of software used, and there was a moderate dependence of the coefficient of variation. Contrast was almost software independent. The mean pixel count varied greatly with the number of iterations for 2 of the software types, and the coefficient of variation increased with the number of iterations for all types of software. The mean pixel count, coefficient of variation, and contrast were almost constant for a fixed product number of iterations times the number of subsets, whatever the number of subsets or iterations. CONCLUSION: Most of the types of software were equivalent for FBP or OSEM reconstruction. However, a few differences were observed with some types of software and should be considered when they are used.


Subject(s)
Algorithms , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Software Validation , Software , Tomography, Emission-Computed, Single-Photon/methods , Likelihood Functions , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity , Tomography, Emission-Computed, Single-Photon/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL