Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters

Country/Region as subject
Publication year range
1.
N Engl J Med ; 388(11): 969-979, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36920755

ABSTRACT

BACKGROUND: Persons with toxic gain-of-function variants in the gene encoding apolipoprotein L1 (APOL1) are at greater risk for the development of rapidly progressive, proteinuric nephropathy. Despite the known genetic cause, therapies targeting proteinuric kidney disease in persons with two APOL1 variants (G1 or G2) are lacking. METHODS: We used tetracycline-inducible APOL1 human embryonic kidney (HEK293) cells to assess the ability of a small-molecule compound, inaxaplin, to inhibit APOL1 channel function. An APOL1 G2-homologous transgenic mouse model of proteinuric kidney disease was used to assess inaxaplin treatment for proteinuria. We then conducted a single-group, open-label, phase 2a clinical study in which inaxaplin was administered to participants who had two APOL1 variants, biopsy-proven focal segmental glomerulosclerosis, and proteinuria (urinary protein-to-creatinine ratio of ≥0.7 to <10 [with protein and creatinine both measured in grams] and an estimated glomerular filtration rate of ≥27 ml per minute per 1.73 m2 of body-surface area). Participants received inaxaplin daily for 13 weeks (15 mg for 2 weeks and 45 mg for 11 weeks) along with standard care. The primary outcome was the percent change from the baseline urinary protein-to-creatinine ratio at week 13 in participants who had at least 80% adherence to inaxaplin therapy. Safety was also assessed. RESULTS: In preclinical studies, inaxaplin selectively inhibited APOL1 channel function in vitro and reduced proteinuria in the mouse model. Sixteen participants were enrolled in the phase 2a study. Among the 13 participants who were treated with inaxaplin and met the adherence threshold, the mean change from the baseline urinary protein-to-creatinine ratio at week 13 was -47.6% (95% confidence interval, -60.0 to -31.3). In an analysis that included all the participants regardless of adherence to inaxaplin therapy, reductions similar to those in the primary analysis were observed in all but 1 participant. Adverse events were mild or moderate in severity; none led to study discontinuation. CONCLUSIONS: Targeted inhibition of APOL1 channel function with inaxaplin reduced proteinuria in participants with two APOL1 variants and focal segmental glomerulosclerosis. (Funded by Vertex Pharmaceuticals; VX19-147-101 ClinicalTrials.gov number, NCT04340362.).


Subject(s)
Apolipoprotein L1 , Glomerulosclerosis, Focal Segmental , Proteinuria , Animals , Humans , Mice , Apolipoprotein L1/antagonists & inhibitors , Apolipoprotein L1/genetics , Apolipoproteins/genetics , Black or African American , Creatinine/urine , Gain of Function Mutation , Genetic Predisposition to Disease , Glomerulosclerosis, Focal Segmental/drug therapy , Glomerulosclerosis, Focal Segmental/genetics , HEK293 Cells , Proteinuria/drug therapy , Proteinuria/genetics
2.
Nat Immunol ; 13(1): 44-50, 2011 Nov 27.
Article in English | MEDLINE | ID: mdl-22120118

ABSTRACT

Mouse invariant natural killer T cells (iNKT cells) provide cognate and noncognate help for lipid and protein-specific B cells, respectively. However, the long-term outcome for B cells after cognate help is provided by iNKT cells is unknown at present. Here we found that cognate iNKT cell help resulted in a B cell differentiation program characterized by extrafollicular plasmablasts, germinal-center formation, affinity maturation and a robust primary immunoglobulin G (IgG) antibody response that was uniquely dependent on iNKT cell-derived interleukin 21 (IL-21). However, cognate help from iNKT cells did not generate an enhanced humoral memory response. Thus, cognate iNKT cell help for lipid-specific B cells induces a unique signature that is a hybrid of classic T cell-dependent and T cell-independent type 2 B cell responses.


Subject(s)
Antigens/immunology , B-Lymphocytes/immunology , Interleukins/physiology , Lipids/immunology , Natural Killer T-Cells/immunology , Animals , Germinal Center/immunology , Immunity, Humoral , Immunologic Memory , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Antigen, B-Cell/immunology , Signal Transduction/immunology , Spleen/immunology
3.
J Biol Chem ; 288(16): 11555-71, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23449973

ABSTRACT

Keratins 8 and 18 (K8/18) are simple epithelial cell-specific intermediate filament proteins. Keratins are essential for tissue integrity and are involved in intracellular signaling pathways that regulate cell response to injuries, cell growth, and death. K8/18 expression is maintained during tumorigenesis; hence, they are used as a diagnostic marker in tumor pathology. In recent years, studies have provided evidence that keratins should be considered not only as markers but also as regulators of cancer cell signaling. The loss of K8/18 expression during epithelial-mesenchymal transition (EMT) is associated with metastasis and chemoresistance. In the present study, we investigated whether K8/18 expression plays an active role in EMT. We show that K8/18 stable knockdown using shRNA increased collective migration and invasiveness of epithelial cancer cells without modulating EMT markers. K8/18-depleted cells showed PI3K/Akt/NF-κB hyperactivation and increased MMP2 and MMP9 expression. K8/18 deletion also increased cisplatin-induced apoptosis. Increased Fas receptor membrane targeting suggests that apoptosis is enhanced via the extrinsic pathway. Interestingly, we identified the tight junction protein claudin1 as a regulator of these processes. This is the first indication that modulation of K8/18 expression can influence the phenotype of epithelial cancer cells at a transcriptional level and supports the hypothesis that keratins play an active role in cancer progression.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Movement/drug effects , Cisplatin/pharmacokinetics , Claudin-1/biosynthesis , Gene Expression Regulation, Neoplastic/drug effects , Keratin-18/biosynthesis , Keratin-8/biosynthesis , Neoplasms, Glandular and Epithelial/metabolism , Apoptosis/drug effects , Apoptosis/genetics , Cell Movement/genetics , Claudin-1/genetics , Enzyme Activation/drug effects , Enzyme Activation/genetics , Epithelial-Mesenchymal Transition/drug effects , Epithelial-Mesenchymal Transition/genetics , Fas Ligand Protein/genetics , Fas Ligand Protein/metabolism , Gene Expression Regulation, Neoplastic/genetics , Gene Knockdown Techniques , HeLa Cells , Hep G2 Cells , Humans , Keratin-18/genetics , Keratin-8/genetics , Matrix Metalloproteinase 2/biosynthesis , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/biosynthesis , Matrix Metalloproteinase 9/genetics , NF-kappa B/genetics , NF-kappa B/metabolism , Neoplasms, Glandular and Epithelial/genetics , Neoplasms, Glandular and Epithelial/pathology , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Up-Regulation/drug effects
4.
Insects ; 15(4)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38667362

ABSTRACT

Onion thrips (Thrips tabaci) can pose a significant threat to onion crops, causing leaf damage, reduced bulb size and quality, and yield loss during severe infestations. Conventional insecticide use has been the primary method for managing this pest species, but the efficacy of this approach is inconsistent. Furthermore, emerging pest resistance is a growing concern in some regions. This two-year field study aimed to assess the effectiveness of several pest management strategies in controlling onion thrips populations and limiting their impact on onion yields. The strategies tested consisted of habitat manipulations (including flower strips and straw mulch), biological control agents (Stratiolaelaps scimitus, Neoseiulus cucumeris, Amblyseius swirskii, and Beauveria bassiana), as well as physical barrier control methods (exclusion nets, kaolin, and mineral oil). Habitat manipulation techniques, particularly the use of flower strips, reduced thrips populations by up to 50% and increased onion yields by 25%. In contrast, exclusion nets had a detrimental effect on onion yields, and the other alternative control methods produced results comparable to those obtained for untreated controls. When used alone, biological control agents were not effective at maintaining thrips populations below economically damaging levels. This study offers valuable insights into effective and sustainable pest management practices for the onion industry.

5.
Cell Rep ; 43(4): 113988, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38517886

ABSTRACT

The basal breast cancer subtype is enriched for triple-negative breast cancer (TNBC) and displays consistent large chromosomal deletions. Here, we characterize evolution and maintenance of chromosome 4p (chr4p) loss in basal breast cancer. Analysis of The Cancer Genome Atlas data shows recurrent deletion of chr4p in basal breast cancer. Phylogenetic analysis of a panel of 23 primary tumor/patient-derived xenograft basal breast cancers reveals early evolution of chr4p deletion. Mechanistically we show that chr4p loss is associated with enhanced proliferation. Gene function studies identify an unknown gene, C4orf19, within chr4p, which suppresses proliferation when overexpressed-a member of the PDCD10-GCKIII kinase module we name PGCKA1. Genome-wide pooled overexpression screens using a barcoded library of human open reading frames identify chromosomal regions, including chr4p, that suppress proliferation when overexpressed in a context-dependent manner, implicating network interactions. Together, these results shed light on the early emergence of complex aneuploid karyotypes involving chr4p and adaptive landscapes shaping breast cancer genomes.


Subject(s)
Breast Neoplasms , Gene Regulatory Networks , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Animals , Mice , Chromosomes, Human, Pair 4/genetics , Cell Proliferation/genetics , Chromosome Aberrations , Cell Line, Tumor , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology
6.
Nat Commun ; 15(1): 4866, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849373

ABSTRACT

Dense and aligned Collagen I fibers are associated with collective cancer invasion led by protrusive tumor cells, leader cells. In some breast tumors, a population of cancer cells (basal-like cells) maintain several epithelial characteristics and express the myoepithelial/basal cell marker Keratin 14 (K14). Emergence of leader cells and K14 expression are regarded as interconnected events triggered by Collagen I, however the underlying mechanisms remain unknown. Using breast carcinoma organoids, we show that Collagen I drives a force-dependent loop, specifically in basal-like cancer cells. The feed-forward loop is centered around the mechanotransducer Yap and independent of K14 expression. Yap promotes a transcriptional program that enhances Collagen I alignment and tension, which further activates Yap. Active Yap is detected in invading breast cancer cells in patients and required for collective invasion in 3D Collagen I and in the mammary fat pad of mice. Our work uncovers an essential function for Yap in leader cell selection during collective cancer invasion.


Subject(s)
Adaptor Proteins, Signal Transducing , Breast Neoplasms , Collagen Type I , Mechanotransduction, Cellular , Neoplasm Invasiveness , Transcription Factors , YAP-Signaling Proteins , Animals , Female , Humans , Mice , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Cell Line, Tumor , Collagen Type I/metabolism , Gene Expression Regulation, Neoplastic , Organoids/metabolism , Organoids/pathology , Transcription Factors/metabolism , Transcription Factors/genetics , YAP-Signaling Proteins/metabolism
7.
J Clin Invest ; 133(7)2023 04 03.
Article in English | MEDLINE | ID: mdl-36795481

ABSTRACT

Activation of the tyrosine kinase c-Src promotes breast cancer progression and poor outcomes, yet the underlying mechanisms are incompletely understood. Here, we have shown that deletion of c-Src in a genetically engineered model mimicking the luminal B molecular subtype of breast cancer abrogated the activity of forkhead box M1 (FOXM1), a master transcriptional regulator of the cell cycle. We determined that c-Src phosphorylated FOXM1 on 2 tyrosine residues to stimulate its nuclear localization and target gene expression. These included key regulators of G2/M cell-cycle progression as well as c-Src itself, forming a positive feedback loop that drove proliferation in genetically engineered and patient-derived models of luminal B-like breast cancer. Using genetic approaches and small molecules that destabilize the FOXM1 protein, we found that targeting this mechanism induced G2/M cell-cycle arrest and apoptosis, blocked tumor progression, and impaired metastasis. We identified a positive correlation between FOXM1 and c-Src expression in human breast cancer and show that the expression of FOXM1 target genes predicts poor outcomes and associates with the luminal B subtype, which responds poorly to currently approved therapies. These findings revealed a regulatory network centered on c-Src and FOXM1 that is a targetable vulnerability in aggressive luminal breast cancers.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/pathology , Forkhead Box Protein M1/genetics , Forkhead Box Protein M1/metabolism , Cell Line, Tumor , Forkhead Transcription Factors/metabolism , Cell Proliferation , Cell Cycle/genetics , Gene Expression Regulation, Neoplastic
8.
Future Drug Discov ; 4(1): FDD71, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35600290

ABSTRACT

Although cancer-associated fibroblasts (CAFs) have gained increased attention for supporting cancer progression, current CAF-targeted therapeutic options are limited and failing in clinical trials. As the largest component of the tumor microenvironment (TME), CAFs alter the biochemical and physical structure of the TME, modulating cancer progression. Here, we review the role of CAFs in altering drug response, modifying the TME mechanics and the current models for studying CAFs. To provide new perspectives, we highlight key considerations of CAF activity and discuss emerging technologies that can better address CAFs; and therefore, increase the likelihood of therapeutic efficacy. We argue that CAFs are crucial components of the cancer drug discovery pipeline and incorporating these cells will improve drug discovery success rates.


Recent advances in cancer research have improved our understanding of disease progression; however, the number of drugs failing in clinical trials remains high and therefore, present a critical challenge for cancer drug discovery. Although the interactions of the tissue surrounding the tumor, the tumor microenvironment, are now considered key targets for new interventions in cancer, the role of microenvironment is largely absent in drug discovery pipelines. Here we explore the role of the most prominent cell type in the tumor microenvironment, cancer-associated fibroblasts (CAFs), in altering cancer therapy response and ultimately patient outcome. To provide new perspectives for future studies, we draw attention to key complications of CAF biology and highlight emerging technologies that could be used to address this. We believe including CAFs in drug discovery, whether for targeting cancer cells or the microenvironment, will allow for a better understanding of therapeutic efficacy and ultimately improve clinical outcome.

9.
Nat Commun ; 13(1): 3812, 2022 07 02.
Article in English | MEDLINE | ID: mdl-35780247

ABSTRACT

Autophagy selectively targets cargo for degradation, yet mechanistic understanding remains incomplete. The ATG8-family plays key roles in autophagic cargo recruitment. Here by mapping the proximal interactome of ATG8-paralogs, LC3B and LC3C, we uncover a LC3C-Endocytic-Associated-Pathway (LEAP) that selectively recruits plasma-membrane (PM) cargo to autophagosomes. We show that LC3C localizes to peripheral endosomes and engages proteins that traffic between PM, endosomes and autophagosomes, including the SNARE-VAMP3 and ATG9, a transmembrane protein essential for autophagy. We establish that endocytic LC3C binds cargo internalized from the PM, including the Met receptor tyrosine kinase and transferrin receptor, and is necessary for their recruitment into ATG9 vesicles targeted to sites of autophagosome initiation. Structure-function analysis identified that LC3C-endocytic localization and engagement with PM-cargo requires the extended carboxy-tail unique to LC3C, the TBK1 kinase, and TBK1-phosphosites on LC3C. These findings identify LEAP as an unexpected LC3C-dependent pathway, providing new understanding of selective coupling of PM signalling with autophagic degradation.


Subject(s)
Endosomes , Microtubule-Associated Proteins , Autophagy/physiology , Cell Membrane/metabolism , Endosomes/metabolism , Microtubule-Associated Proteins/metabolism , SNARE Proteins/metabolism
10.
Oncogene ; 41(12): 1701-1717, 2022 03.
Article in English | MEDLINE | ID: mdl-35110681

ABSTRACT

Transmembrane glycoprotein NMB (GPNMB) is a prognostic marker of poor outcome in patients with triple-negative breast cancer (TNBC). Glembatumumab Vedotin, an antibody drug conjugate targeting GPNMB, exhibits variable efficacy against GPNMB-positive metastatic TNBC as a single agent. We show that GPNMB levels increase in response to standard-of-care and experimental therapies for multiple breast cancer subtypes. While these therapeutic stressors induce GPNMB expression through differential engagement of the MiTF family of transcription factors, not all are capable of increasing GPNMB cell-surface localization required for Glembatumumab Vedotin inhibition. Using a FACS-based genetic screen, we discovered that suppression of heat shock protein 90 (HSP90) concomitantly increases GPNMB expression and cell-surface localization. Mechanistically, HSP90 inhibition resulted in lysosomal dispersion towards the cell periphery and fusion with the plasma membrane, which delivers GPNMB to the cell surface. Finally, treatment with HSP90 inhibitors sensitizes breast cancers to Glembatumumab Vedotin in vivo, suggesting that combination of HSP90 inhibitors and Glembatumumab Vedotin may be a viable treatment strategy for patients with metastatic TNBC.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Triple Negative Breast Neoplasms , Antibodies, Monoclonal , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Membrane/metabolism , Humans , Immunoconjugates/adverse effects , Lysosomes/metabolism , Membrane Glycoproteins/genetics , Transcription Factors , Triple Negative Breast Neoplasms/drug therapy
11.
Biol Reprod ; 85(6): 1133-42, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21816851

ABSTRACT

Traditionally, oxytocin (OT) is well known to play a crucial role in the regulation of cyclic changes in the uterus, implantation of the embryo, and parturition. Recently, an additional role for OT has been identified in several types of cancer cells in which OT acts as a growth regulator. In endometrial cancer cells, OT is known to efficiently inhibit cellular proliferation. In the present study, we show that OT increases invasiveness of human endometrial carcinoma (HEC) cells, which are otherwise resistant to the growth-inhibiting effects of OT. Using pharmacological inhibitors, invasion assay, RNA interference, and immunofluorescence, we found that OT enhances the invasive properties of HEC cells through up-regulation of X-linked inhibitor of apoptosis protein (XIAP), matrix-metalloproteinase 2 (MMP2), and matrix-metalloproteinase 14 (MMP14). In addition, we show that OT-mediated invasion is both cyclooxygenase 1 (PTGS1) and cyclooxygenase-2 (PTGS2) dependent via the phosphatidylinositol 3-kinase/AKT (PIK3/AKT) pathway. PTGS2 knockdown by shRNA resulted in XIAP down-regulation. We also show that OT receptor is overexpressed in grade I to III endometrial cancer. Taken together, our results describe for the first time a novel role for OT in endometrial cancer cell invasion.


Subject(s)
Carcinoma/enzymology , Dinoprostone/metabolism , Endometrial Neoplasms/enzymology , Oxytocin/physiology , Carcinoma/pathology , Cell Line, Tumor , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Endometrial Neoplasms/pathology , Enzyme Activation , Female , Humans , Isoenzymes/metabolism , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 2/metabolism , Neoplasm Invasiveness , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Oxytocin/metabolism , Up-Regulation , X-Linked Inhibitor of Apoptosis Protein/metabolism
12.
Cancers (Basel) ; 13(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073320

ABSTRACT

The molecular mechanism underlying the metabolic reprogramming associated with obesity and high blood cholesterol levels is poorly understood. We previously reported that cholesterol is an endogenous ligand of the estrogen-related receptor alpha (ERRα). Using functional assays, metabolomics, and genomics, here we show that exogenous cholesterol alters the metabolic pathways in estrogen receptor-positive (ER+) and triple-negative breast cancer (TNBC) cells, and that this involves increased oxidative phosphorylation (OXPHOS) and TCA cycle intermediate levels. In addition, cholesterol augments aerobic glycolysis in TNBC cells although it remains unaltered in ER+ cells. Interestingly, cholesterol does not alter the metabolite levels of glutaminolysis, one-carbon metabolism, or the pentose phosphate pathway, but increases the NADPH levels and cellular proliferation, in both cell types. Importantly, we show that the above cholesterol-induced modulations of the metabolic pathways in breast cancer cells are mediated via ERRα. Furthermore, analysis of the ERRα metabolic gene signature of basal-like breast tumours of overweight/obese versus lean patients, using the GEO database, shows that obesity may modulate ERRα gene signature in a manner consistent with our in vitro findings with exogenous cholesterol. Given the close link between high cholesterol levels and obesity, our findings provide a mechanistic explanation for the association between cholesterol/obesity and metabolic reprogramming in breast cancer patients.

13.
Exp Mol Pathol ; 89(2): 117-25, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20643122

ABSTRACT

Keratins 8 and 18 (K8/18) intermediate filament proteins are believed to play an essential role in the protection of hepatocytes against mechanical and toxic stress. This assertion is mainly based on increased hepatocyte fragility observed in transgenic mice deficient in K8/18, or carrying mutations on K8/18. The molecular mechanism by which keratins accomplish their protective functions has not been totally elucidated. Liver diseases such as alcoholic hepatitis and copper metabolism diseases are associated with modifications, in hepatocytes, of intermediate filament organisation and the formation of K8/18 containing aggregates named Mallory-Denk bodies. Treatment of mice with a diet containing griseofulvin induces the formation of Mallory-Denk bodies in hepatocytes. This provides a reliable animal model for assessing the molecular mechanism by which keratins accomplish their protective role in the response of hepatocytes to chemical injuries. In this study, we found that griseofulvin intoxication induced changes in keratin solubility and that there was a 5% to 25% increase in the relative amounts of soluble keratin. Keratin phosphorylation on specific sites (K8 pS79, K8 pS436 and K18 pS33) was increased and prominent in the insoluble protein fractions. Since at least six K8 phosphoepitopes were detected after GF treatment, phosphorylation sites other than the ones studied need to be accounted for. Immunofluorescence staining showed that K8 pS79 epitope was present in clusters of hepatocytes that surrounded apoptotic cells. Activated p38 MAPK was associated with, but not present in K8 pS79-positive cells. These results indicate that griseofulvin intoxication mediates changes in the physicochemical properties of keratin, which result in the remodelling of keratin intermediate filaments which in turn could modulate the signalling pathways in which they are involved by modifying their binding to signalling proteins.


Subject(s)
Chemical and Drug Induced Liver Injury/metabolism , Griseofulvin/poisoning , Keratin-18/metabolism , Keratin-8/chemistry , Liver/metabolism , Animals , Hepatocytes/metabolism , Keratin-18/genetics , Keratin-8/genetics , Liver/physiology , Mice , Mice, Inbred C3H , Phosphorylation , Solubility
14.
J Econ Entomol ; 113(6): 2920-2930, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33080027

ABSTRACT

The seedcorn maggot Delia platura (Meigen), and the bean seed maggot Delia florilega (Zetterstedt) can cause considerable feeding damage to a wide range of cultivated crops. The recent discovery of two distinct genetic lines of D. platura, each with a unique distribution pattern overlapping only in eastern Canada, suggests the presence of a new cryptic species for the group. The reliable identification of the three species/lines in the seedcorn maggot complex is crucial to our understanding of their distribution, phenology, and respective contribution to crop damage as well as to the development of specific integrated pest management approaches. As these taxa are morphologically indistinguishable in the immature stages, we developed a high-resolution melting PCR (HRM) assay using primers amplifying a variable 96-bp PCR product in the CO1 mitochondrial gene for rapid and economical identification of specimens. The three species/lines exhibited distinguishable melting profiles based on their different Tm values (between 0.4 and 0.9°C) and identification results based on HRM and DNA sequencing were congruent for all specimens in the validation data set (n = 100). We then used the new, highly sensitive HRM assay to identify survey specimens from the seedcorn maggot complex collected in Quebec, Canada, between 2017 and 2019. Progress curves developed to document the temporal occurrence patterns of each species/lines indicate differences between taxa, with the N-line (BOLD:AAA3453) of D. platura appearing approximately 17 d before D. florilega (BOLD:ACR4394) and the H-line (BOLD:AAG2511) of D. platura.


Subject(s)
Diptera , Animals , Canada , Diptera/genetics , Larva/genetics , Polymerase Chain Reaction , Quebec
15.
Nat Commun ; 11(1): 4205, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32826891

ABSTRACT

Triple negative breast cancer (TNBC) is a deadly form of breast cancer due to the development of resistance to chemotherapy affecting over 30% of patients. New therapeutics and companion biomarkers are urgently needed. Recognizing the elevated expression of glucose transporter 1 (GLUT1, encoded by SLC2A1) and associated metabolic dependencies in TNBC, we investigated the vulnerability of TNBC cell lines and patient-derived samples to GLUT1 inhibition. We report that genetic or pharmacological inhibition of GLUT1 with BAY-876 impairs the growth of a subset of TNBC cells displaying high glycolytic and lower oxidative phosphorylation (OXPHOS) rates. Pathway enrichment analysis of gene expression data suggests that the functionality of the E2F pathway may reflect to some extent OXPHOS activity. Furthermore, the protein levels of retinoblastoma tumor suppressor (RB1) strongly correlate with the degree of sensitivity to GLUT1 inhibition in TNBC, where RB1-negative cells are insensitive to GLUT1 inhibition. Collectively, our results highlight a strong and targetable RB1-GLUT1 metabolic axis in TNBC and warrant clinical evaluation of GLUT1 inhibition in TNBC patients stratified according to RB1 protein expression levels.


Subject(s)
Glucose Transporter Type 1/antagonists & inhibitors , Glucose Transporter Type 1/metabolism , Retinoblastoma Binding Proteins/metabolism , Triple Negative Breast Neoplasms/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Apoptosis/drug effects , Biomarkers, Tumor , Breast Neoplasms/metabolism , Cell Cycle , Cell Line, Tumor , Cell Proliferation , Female , Gene Expression Regulation, Neoplastic/drug effects , Glucose Transporter Type 1/genetics , Humans , Mice , Oxidative Phosphorylation , Proteomics , Pyrazoles/pharmacology , Pyridines/pharmacology , Quinolines , RNA, Messenger/metabolism , Triple Negative Breast Neoplasms/genetics , Ubiquitin-Protein Ligases/genetics
16.
Cancer Discov ; 10(9): 1312-1329, 2020 09.
Article in English | MEDLINE | ID: mdl-32546577

ABSTRACT

Tumor progression upon treatment arises from preexisting resistant cancer cells and/or adaptation of persister cancer cells committing to an expansion phase. Here, we show that evasion from viral mimicry response allows the growth of taxane-resistant triple-negative breast cancer (TNBC). This is enabled by an epigenetic state adapted to taxane-induced metabolic stress, where DNA hypomethylation over loci enriched in transposable elements (TE) is compensated by large chromatin domains of H3K27me3 to warrant TE repression. This epigenetic state creates a vulnerability to epigenetic therapy against EZH2, the H3K27me3 methyltransferase, which alleviates TE repression in taxane-resistant TNBC, leading to double-stranded RNA production and growth inhibition through viral mimicry response. Collectively, our results illustrate how epigenetic states over TEs promote cancer progression under treatment and can inform about vulnerabilities to epigenetic therapy. SIGNIFICANCE: Drug-resistant cancer cells represent a major barrier to remission for patients with cancer. Here we show that drug-induced metabolic perturbation and epigenetic states enable evasion from the viral mimicry response induced by chemotherapy in TNBC. These epigenetic states define a vulnerability to epigenetic therapy using EZH2 inhibitors in taxane-resistant TNBC.See related commentary by Janin and Esteller, p. 1258.This article is highlighted in the In This Issue feature, p. 1241.


Subject(s)
Antineoplastic Agents/pharmacology , Epigenesis, Genetic/immunology , Molecular Mimicry/immunology , Triple Negative Breast Neoplasms/immunology , Tumor Escape/genetics , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Chromatin Immunoprecipitation Sequencing , DNA Methylation/drug effects , DNA Methylation/immunology , DNA Transposable Elements/genetics , Disease Progression , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/immunology , Enhancer of Zeste Homolog 2 Protein/antagonists & inhibitors , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic/drug effects , Female , Humans , Mice , Molecular Mimicry/genetics , Paclitaxel/pharmacology , Paclitaxel/therapeutic use , RNA, Double-Stranded/immunology , RNA, Double-Stranded/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
17.
Infect Immun ; 77(11): 4794-805, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19720760

ABSTRACT

The unique permissiveness of A/J mouse macrophages for replication of Legionella pneumophila is caused by a deficiency in the Nod-like receptor (NLR) protein and intracellular sensor for L. pneumophila flagellin (Naip5). The signaling pathways and proteins activated by Naip5 sensing in macrophages were investigated. Transcript profiling of macrophages from susceptible A/J mice and from resistant A/J mice harboring a transgenic wild-type copy of Naip5 at 4 h following L. pneumophila infection suggested that two members of the Irf transcriptional regulator family, Irf1 and Irf8, are regulated in response to Naip5 sensing of L. pneumophila. We show that macrophages having defective alleles of either Irf1 (Irf1-/-) or its heterodimerization partner gene Irf8 (Irf8R294C) become permissive for L. pneumophila replication, indicating that both the Irf1 and Irf8 proteins are essential for macrophage defense against L. pneumophila. Moreover, macrophages doubly heterozygous (Naip5AJ/WT Irf8R294C/WT or Nlrc4-/+ Irf8R294C/WT) for combined loss-of-function mutations in Irf8 and in either Naip5 or Nlrc4 are highly susceptible to L. pneumophila, indicating that there is a strong genetic interaction between Irf8 and the NLR protein family in the macrophage response to L. pneumophila. Legionella-containing phagosomes (LCPs) formed in permissive Irf1-/- or Irf8R294C macrophages behave like LCPs formed in Naip5-insufficient and Nlrc4-deficient macrophages which fail to acidify. These results suggest that, in addition to Naip5 and Nlrc4, Irf1 and Irf8 play a critical role in the early response of macrophages to infection with L. pneumophila, including antagonizing the ability of L. pneumophila to block phagosome acidification. They also suggest that flagellin sensing by the NLR proteins Naip5 and Nlrc4 may be coupled to Irf1-Irf8-mediated transcriptional activation of key effector genes essential for macrophage resistance to L. pneumophila infection.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Calcium-Binding Proteins/metabolism , Interferon Regulatory Factor-1/metabolism , Interferon Regulatory Factors/metabolism , Legionnaires' Disease/genetics , Macrophages/microbiology , Neuronal Apoptosis-Inhibitory Protein/metabolism , Animals , Apoptosis Regulatory Proteins/genetics , Blotting, Northern , Calcium-Binding Proteins/genetics , Flagellin/metabolism , Gene Expression Profiling , Gene Expression Regulation, Bacterial/physiology , Host-Parasite Interactions/physiology , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factors/genetics , Legionella pneumophila , Legionnaires' Disease/metabolism , Macrophages/metabolism , Mice , Mice, Transgenic , Neuronal Apoptosis-Inhibitory Protein/genetics , Oligonucleotide Array Sequence Analysis , Phagosomes/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/physiology
18.
Trends Microbiol ; 13(7): 328-35, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15935674

ABSTRACT

Genetic analysis in mice is a powerful approach for the identification of genes and proteins that have a key role at the interface of the host-pathogen interaction. The Lgn1 locus has been found to control the intracellular replication of Legionella pneumophila in murine macrophages. Using functional complementation in transgenic mice, the Naip5/Birc1e gene has been identified as responsible for the Lgn1 effect. The classification of Naip5/Birc1e as a member of the NLR protein family suggests that Naip5/Birc1e acts as an intracellular sensor of L. pneumophila. The nature of the signal transduced by Naip5/Birc1e in response to Legionella products is of great interest but is currently unknown. Here, several possible scenarios are presented.


Subject(s)
Legionella pneumophila/growth & development , Legionnaires' Disease/immunology , Legionnaires' Disease/microbiology , Macrophages/microbiology , Nerve Tissue Proteins/physiology , Animals , Disease Susceptibility , Legionella pneumophila/immunology , Legionnaires' Disease/genetics , Macrophages/immunology , Mice , Nerve Tissue Proteins/genetics , Neuronal Apoptosis-Inhibitory Protein
19.
J Leukoc Biol ; 77(6): 868-77, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15653750

ABSTRACT

Inbred mouse strains have been known for many years to vary in their degree of susceptibility to different types of infectious diseases. The genetic basis of these interstrain differences is sometimes simple but often complex. In a few cases, positional cloning has been used successfully to identify single gene effects. The natural resistance-associated macrophage protein 1 (Nramp1) gene (Slc11a1) codes for a metal transporter active at the phagosomal membrane of macrophages, and Nramp1 mutations cause susceptibility to Mycobacterium, Salmonella, and Leishmania. Furthermore, recent advances in gene transfer technologies in transgenic mice have enabled the functional dissection of gene effects mapping to complex, repeated parts of the genome, such as the Lgn1 locus, causing susceptibility to Legionella pneumophila in macrophages. Finally, complex traits such as the genetically determined susceptibility to malaria can sometimes be broken down into multiple single gene effects. One such example is the case of pyruvate kinase, where a loss-of-function mutation was recently shown by our group to be protective against blood-stage infection with Plasmodium chabaudi. In all three cases reviewed, the characterization of the noted gene effect(s) has shed considerable light on the pathophysiology of the infection, including host response mechanisms.


Subject(s)
Bacterial Infections/genetics , Cation Transport Proteins/genetics , Disease Models, Animal , Genetic Predisposition to Disease , Mice/genetics , Parasitic Diseases/genetics , Animals , Bacterial Infections/microbiology , Mice, Transgenic , Mutation , Parasitic Diseases/parasitology
20.
J Obstet Gynaecol Can ; 28(6): 526-530, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16874927

ABSTRACT

OBJECTIVES: To determine the proportion of women unwilling to see medical students for their upcoming gynaecologic appointments and to determine whether information about medical student training could influence their decisions. METHODS: Questionnaires were mailed to 1230 women with outpatient gynaecology specialist appointments. The women were asked if they would be willing to see a medical student at their upcoming appointment. Those who declined were asked to indicate the reason(s) for their decision. After reading the survey's information section on medical students, patients who initially rejected student involvement were asked if they would reconsider. Mean differences were analyzed with t tests and associations with Fisher exact tests. RESULTS: Thirty percent (367/1230) of the surveys were returned and analyzed. The mean age was 48.4 years (range 17-90). Fifty-three percent (189/358) reported a positive past experience with medical students, and 7% (25/358) reported a negative past experience. Twenty-six percent (96/367) indicated that they would not be willing to be seen by a medical student. Sixty-three percent (60/96) did not wish to have a gynaecologic examination performed by a student. One-third (32/96) identified this as a concern particularly if the examination involved a male student. After reading the information section of the survey, 17% (16/96) of the respondents who initially indicated they were unwilling to see a medical student indicated that they would reconsider. Those who would reconsider were younger than those who remained unwilling (mean age 41.9 vs. 52.1 years, P= 0.045). CONCLUSION: The information about medical students embedded in our survey positively influenced one in six unwilling patients to reconsider and accept medical students as part of their health care team.


Subject(s)
Ambulatory Care/psychology , Gynecology , Patient Acceptance of Health Care/psychology , Students, Medical , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Female , Gynecology/methods , Gynecology/standards , Humans , Middle Aged , Patient Care Team , Physical Examination/psychology , Sex Factors , Surveys and Questionnaires , Workforce
SELECTION OF CITATIONS
SEARCH DETAIL