Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
Add more filters

Publication year range
1.
Clin Chem Lab Med ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38656304

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) are two emerging research technologies that uniquely characterize gene expression microenvironments on a cellular or subcellular level. The skin, a clinically accessible tissue composed of diverse, essential cell populations, serves as an ideal target for these high-resolution investigative approaches. Using these tools, researchers are assembling a compendium of data and discoveries in healthy skin as well as a range of dermatologic pathophysiologies, including atopic dermatitis, psoriasis, and cutaneous malignancies. The ongoing advancement of single-cell approaches, coupled with anticipated decreases in cost with increased adoption, will reshape dermatologic research, profoundly influencing disease characterization, prognosis, and ultimately clinical practice.

2.
J Immunol ; 208(3): 603-617, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35022277

ABSTRACT

MicroRNAs (miRNAs/miRs) are small, endogenous noncoding RNAs that are important post-transcriptional regulators with clear roles in the development of the immune system and immune responses. Using miRNA microarray profiling, we characterized the expression profile of naive and in vivo generated murine effector antiviral CD8+ T cells. We observed that out of 362 measurable mature miRNAs, 120 were differentially expressed by at least 2-fold in influenza-specific effector CD8+ CTLs compared with naive CD8+ T cells. One miRNA found to be highly downregulated on both strands in effector CTLs was miR-139. Because previous studies have indicated a role for miR-139-mediated regulation of CTL effector responses, we hypothesized that deletion of miR-139 would enhance antiviral CTL responses during influenza virus infection. We generated miR-139-/- mice or overexpressed miR-139 in T cells to assess the functional contribution of miR-139 expression in CD8+ T cell responses. Our study demonstrates that the development of naive T cells and generation or differentiation of effector or memory CD8+ T cell responses to influenza virus infection are not impacted by miR-139 deficiency or overexpression; yet, miR-139-/- CD8+ T cells are outcompeted by wild-type CD8+ T cells in a competition setting and demonstrate reduced responses to Listeria monocytogenes Using an in vitro model of T cell exhaustion, we confirmed that miR-139 expression similarly does not impact the development of T cell exhaustion. We conclude that despite significant downregulation of miR-139 following in vivo and in vitro activation, miR-139 expression is dispensable for influenza-specific CTL responses.


Subject(s)
Influenza A virus/immunology , Listeria monocytogenes/immunology , MicroRNAs/genetics , Orthomyxoviridae Infections/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Down-Regulation/genetics , Female , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction/immunology
3.
Genet Med ; 24(1): 75-86, 2022 01.
Article in English | MEDLINE | ID: mdl-34906475

ABSTRACT

PURPOSE: Heritable ectopic mineralization disorders comprise a group of conditions with a broad range of clinical manifestations in nonskeletal connective tissues. We report the genetic findings from a large international cohort of 478 patients afflicted with ectopic mineralization. METHODS: Sequence variations were identified using a next-generation sequencing panel consisting of 29 genes reported in association with ectopic mineralization. The pathogenicity of select splicing and missense variants was analyzed in experimental systems in vitro and in vivo. RESULTS: A total of 872 variants of unknown significance as well as likely pathogenic and pathogenic variants were disclosed in 25 genes. A total of 159 distinct variants were identified in 425 patients in ABCC6, the gene responsible for pseudoxanthoma elasticum, a heritable multisystem ectopic mineralization disorder. The interpretation of variant pathogenicity relying on bioinformatic predictions did not provide a consensus. Our in vitro and in vivo functional assessment of 14 ABCC6 variants highlighted this dilemma and provided unambiguous interpretations to their pathogenicity. CONCLUSION: The results expand the ABCC6 variant repertoire, shed new light on the genetic heterogeneity of heritable ectopic mineralization disorders, and provide evidence that functional characterization in appropriate experimental systems is necessary to determine the pathogenicity of genetic variants.


Subject(s)
Genetic Heterogeneity , Pseudoxanthoma Elasticum , Cohort Studies , Connective Tissue/pathology , Humans , Mutation, Missense , Pseudoxanthoma Elasticum/genetics
4.
Blood ; 135(18): 1560-1573, 2020 04 30.
Article in English | MEDLINE | ID: mdl-32040545

ABSTRACT

Expression of the cell cycle regulatory gene CDK6 is required for Philadelphia-positive (Ph+) acute lymphoblastic leukemia (ALL) cell growth, whereas expression of the closely related CDK4 protein is dispensable. Moreover, CDK6 silencing is more effective than treatment with the dual CDK4/6 inhibitor palbociclib in suppressing Ph+ ALL in mice, suggesting that the growth-promoting effects of CDK6 are, in part, kinase-independent in Ph+ ALL. Accordingly, we developed CDK4/6-targeted proteolysis-targeting chimeras (PROTACs) that inhibit CDK6 enzymatic activity in vitro, promote the rapid and preferential degradation of CDK6 over CDK4 in Ph+ ALL cells, and markedly suppress S-phase cells concomitant with inhibition of CDK6-regulated phospho-RB and FOXM1 expression. No such effects were observed in CD34+ normal hematopoietic progenitors, although CDK6 was efficiently degraded. Treatment with the CDK6-degrading PROTAC YX-2-107 markedly suppressed leukemia burden in mice injected with de novo or tyrosine kinase inhibitor-resistant primary Ph+ ALL cells, and this effect was comparable or superior to that of the CDK4/6 enzymatic inhibitor palbociclib. These studies provide "proof of principle" that targeting CDK6 with PROTACs that inhibit its enzymatic activity and promote its degradation represents an effective strategy to exploit the "CDK6 dependence" of Ph+ ALL and, perhaps, of other hematologic malignancies. Moreover, they suggest that treatment of Ph+ ALL with CDK6-selective PROTACs would spare a high proportion of normal hematopoietic progenitors, preventing the neutropenia induced by treatment with dual CDK4/6 inhibitors.


Subject(s)
Cyclin-Dependent Kinase 6/antagonists & inhibitors , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Protein Kinase Inhibitors/pharmacology , Recombinant Fusion Proteins/pharmacology , Animals , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin-Dependent Kinase 6/metabolism , Disease Models, Animal , Enzyme Activation/drug effects , Gene Expression Profiling , Genes, cdc , Humans , Mice , Molecular Structure , Phosphorylation , Precursor Cell Lymphoblastic Leukemia-Lymphoma/etiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/therapeutic use , Treatment Outcome , Xenograft Model Antitumor Assays
5.
Exp Dermatol ; 31(5): 736-742, 2022 05.
Article in English | MEDLINE | ID: mdl-34862824

ABSTRACT

There has been a significant increase in basal cell carcinoma (BCC) incidence, the most common cancer in humans and the age of presentation with the first diagnosis of BCC has decreased in past decades. In this study, we investigated the possibility of genetic markers that can lead to earlier and closer observation of patients at high risk for development of multiple BCCs. The overall goal is to decrease the morbidity and the economic burden of diagnosis and treatment of recurring and/or advanced BCCs. Four patients with numerous BCCs, some of them exceptionally large, were included in this study. A sample of representative BCCs, normal non-sun-exposed skin and blood samples were obtained from each patient. Whole-exome sequencing of DNA was conducted on all samples, and a series of bioinformatics filtering was performed to identify potentially pathogenic sequence variants. The analysis of the data resulted in detection of oncogenic mutations in PTCH1, two of which being novel, and concurrent mutations in TP53 in BCC tumours of all four patients. Such mutations may explain the numerous and postexcision recurring nature of the BCCs of exceptionally large size observed in all these patients, and they can be suggested to serve as a genetic marker for high-risk patients for early detection, prognostication and close follow-up.


Subject(s)
Carcinoma, Basal Cell , Skin Neoplasms , Carcinogenesis , Carcinoma, Basal Cell/genetics , Carcinoma, Basal Cell/pathology , Humans , Mutation , Neoplasm Recurrence, Local , Patched-1 Receptor/genetics , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Tumor Suppressor Protein p53/genetics
6.
J Immunol ; 204(8): 2076-2087, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32169842

ABSTRACT

Dysregulated Th17 cell differentiation is associated with autoimmune diseases such as multiple sclerosis, which has no curative treatment. Understanding the molecular mechanisms of regulating Th17 cell differentiation will help find a novel therapeutic target for treating Th17 cell-mediated diseases. In this study, we investigated the cell-intrinsic processes by which RNA-binding protein HuR orchestrates Th17 cell fate decisions by posttranscriptionally regulating transcription factors Irf4 and Runx1 and receptor Il12rb1 expression, in turn promoting Th17 cell and Th1-like Th17 cell differentiation in C57BL/6J mice. Knockout of HuR altered the transcriptome of Th17 cells characterized by reducing the levels of RORγt, IRF4, RUNX1, and T-bet, thereby reducing the number of pathogenic IL-17+IFN-γ+CD4+ T cells in the spleen during experimental autoimmune encephalomyelitis. In keeping with the fact that HuR increased the abundance of adhesion molecule VLA-4 on Th17 cells, knockout of HuR impaired splenic Th17 cell migration to the CNS and abolished the disease. Accordingly, targeting HuR by its inhibitor DHTS inhibited splenic Th17 cell differentiation and reduced experimental autoimmune encephalomyelitis severity. In sum, we uncovered the molecular mechanism of HuR regulating Th17 cell functions, underscoring the therapeutic value of HuR for treatment of autoimmune neuroinflammation.


Subject(s)
Cell Differentiation , ELAV-Like Protein 1/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Inflammation/immunology , Th17 Cells/immunology , Animals , Cell Differentiation/drug effects , Cell Differentiation/immunology , ELAV-Like Protein 1/antagonists & inhibitors , ELAV-Like Protein 1/deficiency , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Female , Furans , Inflammation/drug therapy , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Phenanthrenes/pharmacology , Quinones , Th17 Cells/drug effects
7.
Clin Chem ; 67(6): 876-888, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33969388

ABSTRACT

BACKGROUND: Among the approximately 8000 Mendelian disorders, >1000 have cutaneous manifestations. In many of these conditions, the underlying mutated genes have been identified by DNA-based techniques which, however, can overlook certain types of mutations, such as exonic-synonymous and deep-intronic sequence variants. Whole-transcriptome sequencing by RNA sequencing (RNA-seq) can identify such mutations and provide information about their consequences. METHODS: We analyzed the whole transcriptome of 40 families with different types of Mendelian skin disorders with extensive genetic heterogeneity. The RNA-seq data were examined for variant detection and prioritization, pathogenicity confirmation, RNA expression profiling, and genome-wide homozygosity mapping in the case of consanguineous families. Among the families examined, RNA-seq was able to provide information complementary to DNA-based analyses for exonic and intronic sequence variants with aberrant splicing. In addition, we tested the possibility of using RNA-seq as the first-tier strategy for unbiased genome-wide mutation screening without information from DNA analysis. RESULTS: We found pathogenic mutations in 35 families (88%) with RNA-seq in combination with other next-generation sequencing methods, and we successfully prioritized variants and found the culprit genes. In addition, as a novel concept, we propose a pipeline that increases the yield of variant calling from RNA-seq by concurrent use of genome and transcriptome references in parallel. CONCLUSIONS: Our results suggest that "clinical RNA-seq" could serve as a primary approach for mutation detection in inherited diseases, particularly in consanguineous families, provided that tissues and cells expressing the relevant genes are available for analysis.


Subject(s)
Gene Expression Profiling , Skin Diseases , Consanguinity , High-Throughput Nucleotide Sequencing/methods , Humans , Sequence Analysis, RNA/methods , Skin Diseases/diagnosis , Skin Diseases/genetics , Exome Sequencing
8.
BMC Bioinformatics ; 21(1): 56, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32054449

ABSTRACT

BACKGROUND: Quality Control in any high-throughput sequencing technology is a critical step, which if overlooked can compromise an experiment and the resulting conclusions. A number of methods exist to identify biases during sequencing or alignment, yet not many tools exist to interpret biases due to outliers. RESULTS: Hence, we developed iSeqQC, an expression-based QC tool that detects outliers either produced due to variable laboratory conditions or due to dissimilarity within a phenotypic group. iSeqQC implements various statistical approaches including unsupervised clustering, agglomerative hierarchical clustering and correlation coefficients to provide insight into outliers. It can be utilized through command-line (Github: https://github.com/gkumar09/iSeqQC) or web-interface (http://cancerwebpa.jefferson.edu/iSeqQC). A local shiny installation can also be obtained from github (https://github.com/gkumar09/iSeqQC). CONCLUSION: iSeqQC is a fast, light-weight, expression-based QC tool that detects outliers by implementing various statistical approaches.


Subject(s)
Gene Expression Profiling/standards , High-Throughput Nucleotide Sequencing/standards , Sequence Analysis, RNA/standards , Software , Cluster Analysis , Humans , Quality Control
9.
Hum Mutat ; 40(2): 217-229, 2019 02.
Article in English | MEDLINE | ID: mdl-30431684

ABSTRACT

Ichthyosis follicularis, a distinct cutaneous entity reported in combination with atrichia, and photophobia has been associated with mutations in MBTPS2. We sought the genetic cause of a novel syndrome of ichthyosis follicularis, bilateral severe sensorineural hearing loss and punctate palmoplantar keratoderma in two families. We performed whole exome sequencing on three patients from two families. The pathogenicity and consequences of mutations were studied in the Xenopus oocyte expression system and by molecular modeling analysis. Compound heterozygous mutations in the GJB2 gene were discovered: a pathogenic c.526A>G; p.Asn176Asp, and a common frameshift mutation, c.35delG; p.Gly12Valfs*2. The p.Asn176Asp missense mutation was demonstrated to significantly reduce the cell-cell gap junction channel activity and increase the nonjunctional hemichannel activity in the Xenopus oocyte expression system. Molecular modeling analyses of the mutant Cx26 protein revealed significant changes in the structural characteristics and electrostatic potential of the Cx26, either in hemichannel or gap junction conformation. Thus, association of a new syndrome of an autosomal recessive disorder of ichthyosis follicularis, bilateral severe sensorineural hearing loss and punctate palmoplantar keratoderma with mutations in GJB2, expands the phenotypic spectrum of the GJB2-associated disorders. The findings attest to the complexity of the clinical consequences of different mutations in GJB2.


Subject(s)
Connexins/genetics , Hearing Loss, Sensorineural/genetics , Ichthyosis/genetics , Keratoderma, Palmoplantar/genetics , Animals , Connexin 26 , Hearing Loss, Bilateral/genetics , Hearing Loss, Bilateral/pathology , Hearing Loss, Sensorineural/pathology , Humans , Ichthyosis/pathology , Metalloendopeptidases/genetics , Mutation, Missense/genetics , Oocytes/growth & development , Pedigree , Skin/metabolism , Xenopus/genetics
10.
Hum Mutat ; 40(3): 288-298, 2019 03.
Article in English | MEDLINE | ID: mdl-30578701

ABSTRACT

Autosomal recessive congenital ichthyosis (ARCI), a phenotypically heterogeneous group of non-syndromic Mendelian disorders of keratinization, is caused by mutations in as many as 13 distinct genes. We examined a cohort of 125 consanguineous families with ARCI for underlying genetic mutations. The patients' DNA was analyzed with a gene-targeted next generation sequencing panel comprising 38 ichthyosis associated genes. The interpretations of results of genomic data were assisted by genome-wide homozygosity mapping and transcriptome sequencing. Sequence data analysis identified biallelic mutations in 106 families out of a total of 125 (85%), most of them (102, 96.2%) being homozygous, reflecting consanguinity in these families. Among the 85 distinct mutations in 10 different genes, 45 (53%) were previously unreported. Phenotype-genotype correlations allowed assignment of specific genes in the majority of the families to a specific subtype of ARCI, lamellar ichthyosis (LI) versus congenital ichthyosiform erythroderma (CIE). Interestingly, mutations in several genes could give rise to an overlapping phenotype consistent with either LI or CIE. Also, this is the third report for SDR9C7 and SULT2B1, and fourth report for CERS3 mutations. Direct comparison of our results with previously published regional cohorts highlights the global mutation landscape of ARCI, however, population specific differences were noted.


Subject(s)
Consanguinity , Genes, Recessive , Genome, Human , Ichthyosis, Lamellar/genetics , Base Sequence , Cohort Studies , Family , Female , Homozygote , Humans , Ichthyosis, Lamellar/diagnosis , Male , Mutation , Pedigree , Phenotype , RNA Splice Sites/genetics
11.
Clin Infect Dis ; 68(11): 1938-1941, 2019 05 17.
Article in English | MEDLINE | ID: mdl-30778533

ABSTRACT

Biallelic mutations in the ITK gene cause a T-cell primary immunodeficiency with Epstein-Barr virus (EBV)-lymphoproliferative disorders. We describe a novel association of a homozygous ITK mutation with ß-human papillomavirus (HPV)-positive epidermodysplasia verruciformis. Thus, loss of function in ITK can result in broad dysregulation of T-cell responses to oncogenic viruses, including ß-HPV and EBV.


Subject(s)
Epidermodysplasia Verruciformis/genetics , Hodgkin Disease/etiology , Loss of Function Mutation , Protein-Tyrosine Kinases/deficiency , Protein-Tyrosine Kinases/genetics , T-Lymphocytes/pathology , Acitretin/therapeutic use , Adult , Alleles , Drug Therapy , Epidermodysplasia Verruciformis/drug therapy , Epidermodysplasia Verruciformis/immunology , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/immunology , Female , Genetic Association Studies , Hodgkin Disease/drug therapy , Hodgkin Disease/immunology , Homozygote , Humans , Keratolytic Agents/therapeutic use , Lymphoproliferative Disorders/genetics , Lymphoproliferative Disorders/pathology , Lymphoproliferative Disorders/virology , Male , Papillomaviridae , Siblings , Tomography, X-Ray Computed
12.
Clin Chem ; 65(8): 972-985, 2019 08.
Article in English | MEDLINE | ID: mdl-30872376

ABSTRACT

BACKGROUND: Single-cell genomics is an approach to investigate cell heterogeneity and to identify new molecular features correlated with clinical outcomes. This approach allows identification of the complexity of cell diversity in a sample without the loss of information that occurs when multicellular or bulk tissue samples are analyzed. CONTENT: The first single-cell RNA-sequencing study was published in 2009, and since then many more studies and single-cell sequencing methods have been published. These studies have had a major impact on several fields, including microbiology, neurobiology, cancer, and developmental biology. Recently, improvements in reliability and the development of commercial single-cell isolation platforms are opening the potential of this technology to the clinical laboratory. SUMMARY: In this review we provide an overview of the current state of single-cell genomics. We describe opportunities in clinical research and medical applications.


Subject(s)
Genomics/methods , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Cell Separation/methods , Epigenomics , Gene Amplification , History, 20th Century , History, 21st Century , Humans , Immunity/genetics , Microbiota/genetics , Neoplasms/genetics , Reproducibility of Results , Single-Cell Analysis/history , Single-Cell Analysis/trends , Transcriptome/genetics
13.
Hum Mutat ; 39(3): 371-377, 2018 03.
Article in English | MEDLINE | ID: mdl-29219214

ABSTRACT

Whole exome sequencing (WES) was used to investigate two Italian siblings with wild-type RET genotype, who developed medullary thyroid cancers (MTCs) and, later, primary prostate and breast cancers, respectively. The proband's MTC harbored a p.Met918Thr RET mutation; his sister's MTC was RET/RAS wild-type. Both siblings had a germline mutation (p.Arg417Gln) in the extracellular Sema domain of the proto-oncogene MET. Experiments involving ectopic expression of MET p.Arg417Gln in MET-negative T47D breast cancer cells documented the mutant receptor's functionality and its ability to enhance cell migration and invasion. Our findings highlight a possible link between MET germline mutations and MTCs and suggest that MET p. Arg417Gln may promote an invasive malignant phenotype. The possibility that MTC can be driven/co-driven by a MET mutation has potential management implications, since the tyrosine-kinase inhibitor cabozantinib-approved for treating advanced MTCs-is a specific MET inhibitor.


Subject(s)
Carcinoma, Neuroendocrine/genetics , Exome Sequencing , Germ Cells/metabolism , Mutation/genetics , Proto-Oncogene Proteins c-met/genetics , Proto-Oncogene Proteins c-ret/genetics , Siblings , Thyroid Neoplasms/genetics , Base Sequence , Female , Humans , Male , Pedigree , Proto-Oncogene Mas
14.
Blood Cells Mol Dis ; 72: 37-43, 2018 09.
Article in English | MEDLINE | ID: mdl-30055940

ABSTRACT

Variation in platelet response to thrombin may affect the safety and efficacy of PAR antagonism. The Thr120 variant of the common single nucleotide polymorphism (SNP) rs773902 in the protease-activated receptor (PAR) 4 gene is associated with higher platelet aggregation compared to the Ala120 variant. We investigated the relationship between the rs773902 SNP with major bleeding and ischemic events, safety, and efficacy of PAR1 inhibition in 6177 NSTE ACS patients in the TRACER trial. There was a lower rate of GUSTO moderate/severe bleeding in patients with the Thr120 variant. The difference was driven by a lower rate in the smaller homozygous group (recessive model, HR 0.13 [0.02-0.92] P = 0.042). No significant differences were observed in the ischemic outcomes. The excess in bleeding observed with PAR1 inhibition was attenuated in patients with the Thr120 variant, but the interactions were not statistically significant. In summary, lower major bleeding rates were observed in the overall TRACER cohort with the hyperreactive PAR4 Thr120 variant. The increase in bleeding with vorapaxar was attenuated with the Thr120 variant, but we could not demonstrate an interaction with PAR1 inhibition. These findings warrant further exploration, including those of African ancestry where the A allele (Thr120) frequency is ~65%.


Subject(s)
Genetic Variation , Lactones/adverse effects , Pyridines/adverse effects , Randomized Controlled Trials as Topic , Receptors, Thrombin/genetics , Acute Coronary Syndrome , Aged , Female , Genotype , Hemorrhage/chemically induced , Hemorrhage/genetics , Humans , Ischemia , Male , Middle Aged , Platelet Aggregation Inhibitors/adverse effects , Polymorphism, Single Nucleotide , Receptor, PAR-1/antagonists & inhibitors
15.
Proc Natl Acad Sci U S A ; 112(10): E1106-15, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25713380

ABSTRACT

Two decades after the discovery of the first animal microRNA (miRNA), the number of miRNAs in animal genomes remains a vexing question. Here, we report findings from analyzing 1,323 short RNA sequencing samples (RNA-seq) from 13 different human tissue types. Using stringent thresholding criteria, we identified 3,707 statistically significant novel mature miRNAs at a false discovery rate of ≤ 0.05 arising from 3,494 novel precursors; 91.5% of these novel miRNAs were identified independently in 10 or more of the processed samples. Analysis of these novel miRNAs revealed tissue-specific dependencies and a commensurate low Jaccard similarity index in intertissue comparisons. Of these novel miRNAs, 1,657 (45%) were identified in 43 datasets that were generated by cross-linking followed by Argonaute immunoprecipitation and sequencing (Ago CLIP-seq) and represented 3 of the 13 tissues, indicating that these miRNAs are active in the RNA interference pathway. Moreover, experimental investigation through stem-loop PCR of a random collection of newly discovered miRNAs in 12 cell lines representing 5 tissues confirmed their presence and tissue dependence. Among the newly identified miRNAs are many novel miRNA clusters, new members of known miRNA clusters, previously unreported products from uncharacterized arms of miRNA precursors, and previously unrecognized paralogues of functionally important miRNA families (e.g., miR-15/107). Examination of the sequence conservation across vertebrate and invertebrate organisms showed 56.7% of the newly discovered miRNAs to be human-specific whereas the majority (94.4%) are primate lineage-specific. Our findings suggest that the repertoire of human miRNAs is far more extensive than currently represented by public repositories and that there is a significant number of lineage- and/or tissue-specific miRNAs that are uncharacterized.


Subject(s)
MicroRNAs/genetics , Primates/genetics , Animals , Base Sequence , Gene Knockdown Techniques , Genome , Ribonuclease III/genetics , Sequence Alignment
16.
J Transl Med ; 15(1): 145, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28645290

ABSTRACT

BACKGROUND: Metastatic uveal melanoma is a highly fatal disease; most patients die from their hepatic metastasis within 1 year. A major drawback in the development of new treatments for metastatic uveal melanoma is the difficulty in obtaining appropriate cell lines and the lack of appropriate animal models. Patient-derived xenograft (PDX) tumor models, bearing ectopically implanted tumors at a subcutaneous site, have been developed. However, these ectopically implanted PDX models have obstacles to translational research, including a low engraftment rate, slow tumor growth, and biological changes after multiple passages due to the different microenvironment. To overcome these limitations, we developed a new method to directly transplant biopsy specimens to the liver of immunocompromised mice. RESULTS: By using two metastatic uveal melanoma cell lines, we demonstrated that the liver provides a more suitable microenvironment for tumor growth compared to subcutaneous sites and that surgical orthotopic implantation (SOI) of tumor pieces allows the creation of a liver tumor in immunocompromised mice. Subsequently, 10 of 12 hepatic metastasis specimens from patients were successfully xenografted into the immunocompromised mice (83.3% success rate) using SOI, including 8 of 10 needle biopsy specimens (80%). Additionally, four cryopreserved PDX tumors were re-implanted to new mice and re-establishment of PDX tumors was confirmed in all four mice. The serially passaged xenograft tumors as well as the re-implanted tumors after cryopreservation were similar to the original patient tumors in histologic, genomic, and proteomic expression profiles. CT imaging was effective for detecting and monitoring PDX tumors in the liver of living mice. The expression of Ki67 in original patient tumors was a predictive factor for implanted tumor growth and the success of serial passages in PDX mice. CONCLUSIONS: Surgical orthotopic implantation of hepatic metastasis from uveal melanoma is highly successful in the establishment of orthotopic PDX models, enhancing their practical utility for research applications. By using CT scan, tumor growth can be monitored, which is beneficial to evaluate treatment effects in interventional studies.


Subject(s)
Liver Neoplasms/secondary , Melanoma/pathology , Uveal Neoplasms/pathology , Xenograft Model Antitumor Assays , Adult , Aged , Animals , Cell Line, Tumor , Cluster Analysis , Cryopreservation , DNA Copy Number Variations/genetics , Female , Humans , Liver/pathology , Liver/surgery , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/genetics , Liver Neoplasms/surgery , Male , Mice , Middle Aged , Mutation/genetics , Tumor Microenvironment
17.
Luminescence ; 32(2): 132-141, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27417153

ABSTRACT

Important and emerging trends at the interface of luminescence, nucleic acids and nanotechnology are: (i) the conventional luminescence labeling of nucleic acid nanostructures (e.g. DNA tetrahedron); (ii) the labeling of bulk nucleic acids (e.g. single-stranded DNA, double-stranded DNA) with nanostructured luminescent labels (e.g. copper nanoclusters); and (iii) the labeling of nucleic acid nanostructures (e.g. origami DNA) with nanostructured luminescent labels (e.g. silver nanoclusters). This review surveys recent advances in these three different approaches to the generation of nanostructured luminescently labeled nucleic acids, and includes both direct and indirect labeling methods.


Subject(s)
Luminescence , Nanostructures/chemistry , Nucleic Acids/chemistry
18.
Blood ; 123(16): e37-45, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24523238

ABSTRACT

There is little data considering relationships among human RNA, demographic variables, and primary human cell physiology. The platelet RNA and expression-1 study measured platelet aggregation to arachidonic acid, ADP, protease-activated receptor (PAR) 1 activation peptide (PAR1-AP), and PAR4-AP, as well as mRNA and microRNA (miRNA) levels in platelets from 84 white and 70 black healthy subjects. A total of 5911 uniquely mapped mRNAs and 181 miRNAs were commonly expressed and validated in a separate cohort. One hundred twenty-nine mRNAs and 15 miRNAs were differentially expressed (DE) by age, and targets of these miRNAs were over-represented among these mRNAs. Fifty-four mRNAs and 9 miRNAs were DE by gender. Networks of miRNAs targeting mRNAs, both DE by age and gender, were identified. The inverse relationship in these RNA pairs suggests miRNAs regulate mRNA levels on aging and between genders. A simple, interactive public web tool (www.plateletomics.com) was developed that permits queries of RNA levels and associations among RNA, platelet aggregation and demographic variables. Access to these data will facilitate discovery of mechanisms of miRNA regulation of gene expression. These results provide new insights into aging and gender, and future platelet RNA association studies must account for age and gender.


Subject(s)
Blood Platelets/metabolism , Gene Regulatory Networks , MicroRNAs/genetics , RNA, Messenger/genetics , Adolescent , Adult , Age Factors , Female , Genomics/methods , Humans , Male , MicroRNAs/metabolism , Middle Aged , RNA, Messenger/metabolism , Sex Factors , Young Adult
19.
Int J Mol Sci ; 17(10)2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27706044

ABSTRACT

The availability of blood-based diagnostic testing using a non-invasive technique holds promise for real-time monitoring of disease progression and treatment selection. Circulating tumor cells (CTCs) have been used as a prognostic biomarker for the metastatic breast cancer (MBC). The molecular characterization of CTCs is fundamental to the phenotypic identification of malignant cells and description of the relevant genetic alterations that may change according to disease progression and therapy resistance. However, the molecular characterization of CTCs remains a challenge because of the rarity and heterogeneity of CTCs and technological difficulties in the enrichment, isolation and molecular characterization of CTCs. In this pilot study, we evaluated circulating tumor associated cells in one blood draw by size exclusion technology and cytological analysis. Among 30 prospectively enrolled MBC patients, CTCs, circulating tumor cell clusters (CTC clusters), CTCs of epithelial-mesenchymal transition (EMT) and cancer associated macrophage-like cells (CAMLs) were detected and analyzed. For molecular characterization of CTCs, size-exclusion method for CTC enrichment was tested in combination with DEPArray™ technology, which allows the recovery of single CTCs or pools of CTCs as a pure CTC sample for mutation analysis. Genomic mutations of TP53 and ESR1 were analyzed by targeted sequencing on isolated 7 CTCs from a patient with MBC. The results of genomic analysis showed heterozygous TP53 R248W mutation from one single CTC and pools of three CTCs, and homozygous TP53 R248W mutation from one single CTC and pools of two CTCs. Wild-type ESR1 was detected in the same isolated CTCs. The results of this study reveal that size-exclusion method can be used to enrich and identify circulating tumor associated cells, and enriched CTCs were characterized for genetic alterations in MBC patients, respectively.


Subject(s)
Breast Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Biomarkers, Tumor/metabolism , Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , DNA Mutational Analysis , Epithelial-Mesenchymal Transition , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Humans , Microscopy, Fluorescence , Mutation , Neoplasm Metastasis , Neoplasm Staging , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
20.
Clin Chem ; 61(1): 213-20, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25414276

ABSTRACT

BACKGROUND: Reporting clinically actionable incidental genetic findings in the course of clinical exome testing is recommended by the American College of Medical Genetics and Genomics (ACMG). However, the performance of clinical exome methods for reporting small subsets of genes has not been previously reported. METHODS: In this study, 57 exome data sets performed as clinical (n = 12) or research (n = 45) tests were retrospectively analyzed. Exome sequencing data was examined for adequacy in the detection of potentially pathogenic variant locations in the 56 genes described in the ACMG incidental findings recommendation. All exons of the 56 genes were examined for adequacy of sequencing coverage. In addition, nucleotide positions annotated in HGMD (Human Gene Mutation Database) were examined. RESULTS: The 56 ACMG genes have 18 336 nucleotide variants annotated in HGMD. None of the 57 exome data sets possessed a HGMD variant. The clinical exome test had inadequate coverage for >50% of HGMD variant locations in 7 genes. Six exons from 6 different genes had consistent failure across all 3 test methods; these exons had high GC content (76%-84%). CONCLUSIONS: The use of clinical exome sequencing for the interpretation and reporting of subsets of genes requires recognition of the substantial possibility of inadequate depth and breadth of sequencing coverage at clinically relevant locations. Inadequate depth of coverage may contribute to false-negative clinical exome results.


Subject(s)
DNA/genetics , Exome/genetics , Incidental Findings , Molecular Diagnostic Techniques/methods , Sequence Analysis, DNA/methods , Databases, Genetic , Genetic Variation , Humans , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL