Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Mol Microbiol ; 121(2): 196-212, 2024 02.
Article in English | MEDLINE | ID: mdl-37918886

ABSTRACT

Infections caused by Acinetobacter baumannii, a Gram-negative opportunistic pathogen, are difficult to eradicate due to the bacterium's propensity to quickly gain antibiotic resistances and form biofilms, a protective bacterial multicellular community. The A. baumannii DNA damage response (DDR) mediates the antibiotic resistance acquisition and regulates RecA in an atypical fashion; both RecALow and RecAHigh cell types are formed in response to DNA damage. The findings of this study demonstrate that the levels of RecA can influence formation and dispersal of biofilms. RecA loss results in surface attachment and prominent biofilms, while elevated RecA leads to diminished attachment and dispersal. These findings suggest that the challenge to treat A. baumannii infections may be explained by the induction of the DDR, common during infection, as well as the delicate balance between maintaining biofilms in low RecA cells and promoting mutagenesis and dispersal in high RecA cells. This study underscores the importance of understanding the fundamental biology of bacteria to develop more effective treatments for infections.


Subject(s)
Acinetobacter baumannii , Acinetobacter baumannii/metabolism , DNA Damage , Biofilms , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/metabolism , Drug Resistance, Multiple, Bacterial
2.
J Am Chem Soc ; 142(4): 1680-1685, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31913034

ABSTRACT

Rosette nanotubes (RNTs) are a class of materials formed by molecular self-assembly of a fused guanine-cytosine base (G∧C base). An important feature of these self-assembled nanotubes is their precise atomic structure, intriguing for rational design and optimization as synthetic transmembrane porins. Here, we present experimental observations of ion transport across 1.1 nm inner diameter RNT porins (RNTPs) of various lengths in the range 5-200 nm. In a typical experiment, custom lipophilic RNTPs were first inserted into lipid vesicles; the vesicles then spontaneously fused with a planar lipid bilayer, which produced stepwise increases of ion current across the bilayer. Our measurements in 1 M KCl solution indicate ion transport rates of ∼50 ions s-1 V-1 m, which for short channels amounts to conductance values of ∼1 nS, commensurate with naturally occurring toxin channels such as α-hemolysin. Measurements of interaction times of α-cyclodextrin with RNTPs reveal two distinct unbinding time scales, which suggest that interactions of either face of α-cyclodextrin with the RNTP face are differentiable, backed with all-atom molecular dynamics simulations. Our results highlight the potential of RNTPs as self-assembled nonproteinaceous single-molecule sensors and selective nanofilters with tunable functionality through chemistry.


Subject(s)
Nanotubes/chemistry , Porins/chemistry , Ion Transport , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , alpha-Cyclodextrins/chemistry
3.
Environ Sci Technol ; 53(3): 1536-1544, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30589545

ABSTRACT

The individual cellular level and quantitative Polyphosphate (PolyP)-metal compositions in EBPR (enhanced biological phosphorus removal) systems have hardly been investigated and its potential link to EBPR performance therefore remain largely unknown. In this study, we applied scanning electron microscopy combined with energy dispersive X-ray spectroscopy (SEM/EDX) method that enabled detection and semiquantification of metal elemental compositions in intact intracellular PolyP granules in individual PAO (polyphosphate accumulating organism) cells. We, for the first time, revealed diverse and dynamic distributions of different metals ions in the PolyP-metal granules in different EBPR systems operated with the same influent metal composition but varying SRT of 5-30 days. We further demonstrated that the PolyP-metal composition diversity correlated with 16S rRNA gene based PAO phylogenetic diversity, suggesting the possible phylogeny-dependent PolyP-metal composition variation. The impact of PolyP metal composition in EBPR system, especially the Mg content in PolyP granules, was evidenced by the significant and strong positive correlation between PolyP-Mg content and the long-term stability of the four EBPR systems with varying SRTs. The PolyP-Mg content can therefore possibly serve as an indicator for EBPR performance monitoring. The results demonstrated that phenotyping techniques, such as PolyP-metal-based profiling, in compliment, or combined with genotyping techniques such as phylogenetic and functional gene sequencing, can provide more insights into the mechanisms and performance prediction of this important microbial ecosystem.


Subject(s)
Ecosystem , Phosphorus , Bioreactors , Metals , Phylogeny , Polyphosphates , RNA, Ribosomal, 16S , Sewage
4.
Environ Microbiol ; 17(1): 215-28, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25088710

ABSTRACT

Intensive microbial growth typically observed in laboratory rarely occurs in nature. Because of severe nutrient deficiency, natural populations exhibit near-zero growth (NZG). There is a long-standing controversy about sustained NZG, specifically whether there is a minimum growth rate below which cells die or whether cells enter a non-growing maintenance state. Using chemostat with cell retention (CCR) of Pseudomonas putida, we resolve this controversy and show that under NZG conditions, bacteria differentiate into growing and VBNC (viable but not non-culturable) forms, the latter preserving measurable catabolic activity. The proliferating cells attained a steady state, their slow growth balanced by VBNC production. Proteomic analysis revealed upregulated (transporters, stress response, self-degrading enzymes and extracellular polymers) and downregulated (ribosomal, chemotactic and primary biosynthetic enzymes) proteins in the CCR versus batch culture. Based on these profiles, we identified intracellular processes associated with NZG and generated a mathematical model that simulated the observations. We conclude that NZG requires controlled partial self-digestion and deep reconfiguration of the metabolic machinery that results in the biosynthesis of new products and development of broad stress resistance. CCR allows efficient on-line control of NZG including VBNC production. A well-nuanced understanding of NZG is important to understand microbial processes in situ and for optimal design of environmental technologies.


Subject(s)
Pseudomonas putida/growth & development , Bacterial Proteins/metabolism , Kinetics , Microbial Viability , Mutation , Proteomics , Pseudomonas putida/cytology , Pseudomonas putida/genetics , Pseudomonas putida/metabolism
5.
Int J Syst Evol Microbiol ; 64(Pt 8): 2642-2649, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24824639

ABSTRACT

Three strictly anaerobic, Gram-positive, non-spore-forming, rod-shaped, motile bacteria, designated strains ACB1(T), ACB7(T) and ACB8, were isolated from human subgingival dental plaque. All strains required yeast extract for growth. Strains ACB1(T) and ACB8 were able to grow on glucose, lactose, maltose, maltodextrin and raffinose; strain ACB7(T) grew weakly on sucrose only. The growth temperature range was 30-42 °C with optimum growth at 37 °C. Major metabolic fermentation end products of strain ACB1(T) were acetate and lactate; the only product of strains ACB7(T) and ACB8 was acetate. Major fatty acids of strain ACB1(T) were C(14 : 0), C(16 : 0), C(16 : 1)ω7c dimethyl aldehyde (DMA) and C(18 : 1)ω7c DMA. Major fatty acids of strain ACB7(T) were C(12 : 0), C(14 : 0), C(16 : 0), C(16 : 1)ω7c and C(16 : 1)ω7c DMA. The hydrolysate of the peptidoglycan contained meso-diaminopimelic acid, indicating peptidoglycan type A1γ. Genomic DNA G+C content varied from 42 to 43.3% between strains. According to 16S rRNA gene sequence phylogeny, strains ACB1(T), ACB8 and ACB7(T) formed two separate branches within the genus Oribacterium, with 98.1-98.6% sequence similarity to the type strain of the type species, Oribacterium sinus. Predicted DNA-DNA hybridization values between strains ACB1(T), ACB8, ACB7(T) and O. sinus F0268 were <70%. Based on distinct genotypic and phenotypic characteristics, strains ACB1(T) and ACB8, and strain ACB7(T) are considered to represent two distinct species of the genus Oribacterium, for which the names Oribacterium parvum sp. nov. and Oribacterium asaccharolyticum sp. nov. are proposed. The type strains are ACB1(T) ( = DSM 24637(T) = HM-481(T) = ATCC BAA-2638(T)) and ACB7(T) ( = DSM 24638(T) = HM-482(T) = ATCC BAA-2639(T)), respectively.


Subject(s)
Dental Plaque/microbiology , Gram-Positive Asporogenous Rods/classification , Mouth/microbiology , Phylogeny , Adult , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Diaminopimelic Acid/chemistry , Fatty Acids/chemistry , Female , Gram-Positive Asporogenous Rods/genetics , Gram-Positive Asporogenous Rods/isolation & purification , Humans , Molecular Sequence Data , Nucleic Acid Hybridization , Peptidoglycan/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
6.
Int J Syst Evol Microbiol ; 63(Pt 4): 1450-1456, 2013 Apr.
Article in English | MEDLINE | ID: mdl-22843721

ABSTRACT

A strictly anaerobic Gram-stain-variable but positive by structure, non-spore-forming bacterium designated Lachnospiraceae bacterium ACC2 strain DSM 24645(T) was isolated from human subgingival dental plaque. Bacterial cells were 4-40 µm long non-motile rods, often swollen and forming curved filaments up to 200 µm. Cells contained intracellular, poorly crystalline, nanometre-sized iron- and sulfur-rich particles. The micro-organism was able to grow on yeast extract, trypticase peptone, milk, some sugars and organic acids. The major metabolic end-products of glucose fermentation were butyrate, lactate, isovalerate and acetate. The growth temperature and pH ranges were 30-42 °C and 4.9-7.5, respectively. Major fatty acids were C14 : 0, C14 : 0 DMA (dimethyl aldehyde), C16 : 0, C16 : 1ω7c DMA. The whole-cell hydrolysate contained meso-diaminopimelic acid, indicating peptidoglycan type A1γ. The DNA G+C content was calculated to be 55.05 mol% from the whole-genome sequence and 55.3 mol% as determined by HPLC. There were no predicted genes responsible for biosynthesis of respiratory lipoquinones, mycolic acids and lipopolysaccharides. Genes associated with synthesis of teichoic and lipoteichoic acids, diaminopimelic acid, polar lipids and polyamines were present. According to the 16S rRNA gene sequence phylogeny, strain DSM 24645(T) formed, together with several uncultured oral clones, a separate branch within the family Lachnospiraceae, with the highest sequence similarity to the type strain of Moryella indoligenes at 94.2 %. Based on distinct phenotypic and genotypic characteristics, we suggest that strain DSM 24645(T) represents a novel species in a new genus, for which the name Stomatobaculum longum gen. nov., sp. nov. is proposed. The type strain of Stomatobaculum longum is DSM 24645(T) ( = HM-480(T); deposited in BEI Resources, an NIH collection managed by the ATCC).


Subject(s)
Dental Plaque/microbiology , Mouth/microbiology , Phylogeny , Adult , Bacteria, Anaerobic/classification , Bacteria, Anaerobic/genetics , Bacteria, Anaerobic/isolation & purification , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/analysis , Female , Humans , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
7.
Dev Cell ; 12(5): 793-806, 2007 May.
Article in English | MEDLINE | ID: mdl-17488629

ABSTRACT

Mitochondrial disruption is a conserved aspect of apoptosis, seen in many species from mammals to nematodes. Despite significant conservation of other elements of the apoptotic pathway in Drosophila, a broad role for mitochondrial changes in apoptosis in flies remains unconfirmed. Here, we show that Drosophila mitochondria become permeable in response to the expression of Reaper and Hid, endogenous regulators of developmental apoptosis. Caspase activation in the absence of Reaper and Hid is not sufficient to permeabilize mitochondria, but caspases play a role in Reaper- and Hid-induced mitochondrial changes. Reaper and Hid rapidly localize to mitochondria, resulting in changes in mitochondrial ultrastructure. The dynamin-related protein, Drp1, is important for Reaper- and DNA-damage-induced mitochondrial disruption. Significantly, we show that inhibition of Reaper or Hid mitochondrial localization or inhibition of Drp1 significantly inhibits apoptosis, indicating a role for mitochondrial disruption in fly apoptosis.


Subject(s)
Apoptosis , Drosophila melanogaster/cytology , Mitochondria/metabolism , Animals , Apoptosis/radiation effects , Caspases/metabolism , Cytochromes c/metabolism , Cytoskeletal Proteins/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Drosophila melanogaster/radiation effects , Drosophila melanogaster/ultrastructure , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/metabolism , Embryo, Nonmammalian/radiation effects , Enzyme Activation/radiation effects , GTP-Binding Proteins/metabolism , Mitochondria/enzymology , Mitochondria/radiation effects , Mitochondria/ultrastructure , Mitochondrial Membranes/metabolism , Mutant Proteins/metabolism , Mutation/genetics , Neuropeptides/chemistry , Neuropeptides/metabolism , Permeability/radiation effects , Protein Structure, Tertiary , Protein Transport/radiation effects , Radiation, Ionizing
8.
Int J Syst Evol Microbiol ; 62(Pt 6): 1425-1433, 2012 Jun.
Article in English | MEDLINE | ID: mdl-21841005

ABSTRACT

The majority of environmental micro-organisms identified with the rRNA approach have never been visualized. Thus, their reliable classification and taxonomic assignment is often difficult or even impossible. In our preliminary 18S rRNA gene sequencing work from the world's largest anoxic marine environment, the Cariaco Basin (Caribbean Sea, Venezuela), we detected a ciliate clade, designated previously as CAR_H [Stoeck, S., Taylor, G. T. & Epstein, S. S. (2003). Appl Environ Microbiol 63, 5656-5663]. Here, we combine the traditional rRNA detection method of fluorescent in situ hybridization (FISH) with scanning electron microscopy (SEM) and confirm the phylogenetic separation of the CAR_H sequences from all other ciliate classes by showing an outstanding morphological feature of this group: a unique, archway-shaped kinety surrounding the oral apparatus and extending to the posterior body end in CAR_H cells. Based on this specific feature and the molecular phylogenies, we propose a novel ciliate class, Cariacotrichea nov. cl.


Subject(s)
Ciliophora/classification , Ciliophora/isolation & purification , Seawater/parasitology , Ciliophora/genetics , Ciliophora/growth & development , In Situ Hybridization, Fluorescence , Molecular Sequence Data , Phylogeny , RNA, Ribosomal/genetics , Seawater/chemistry , Venezuela
9.
Cancer Sci ; 100(8): 1537-43, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19459849

ABSTRACT

The use of magnetic drug targeting (MDT) to selectively deliver chemotherapeutic drugs to tumor cells is a widely investigated approach; however, the notion of targeting tumor endothelial cells by this method is a fairly new concept. Positively-charged (cationic) liposomes have an extraordinarily high affinity for tumor vessels, but heterogeneous targeting is frequently observed. In order to improve on the overall efficiency of targeting tumor vessels, we investigated the use of an externally applied magnetic field together with magnetic cationic liposomes (MCLs) for cancer treatment. We examined the antitumor effect of the chemotherapeutic agent vinblastine loaded in MCLs, using a murine model of melanoma. Two hours following i.v. administration of MCLs, we observed significant tumor vascular uptake with use of an external magnet (15.9 +/- 6.3%) compared to no magnet (5 +/- 1.3%). The administration of vinblastine-loaded MCLs with the magnet produced a significant antitumor effect, reducing the presence of tumor nodules in preferential sites of metastasis compared to untreated and free drug control groups. CD31 immunostaining revealed a decrease in the general length of tumor blood vessels, altered vascular morphology and interruptions in the tumor vascular lining for the vinblastine-loaded MCL groups. Drug-loaded MCLs with magnetic fields may represent a promising combination approach for cancer treatment.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Magnetics , Neoplasm Metastasis/prevention & control , Neovascularization, Pathologic/drug therapy , Vinblastine/pharmacology , Animals , Cations/pharmacology , Cell Line, Tumor , Disease Models, Animal , Drug Delivery Systems/methods , Female , Immunohistochemistry , Liposomes/pharmacology , Melanoma, Experimental/blood supply , Melanoma, Experimental/drug therapy , Melanoma, Experimental/pathology , Melanoma, Experimental/ultrastructure , Mice , Mice, SCID , Neoplasms/blood supply , Neoplasms/drug therapy , Neoplasms/ultrastructure , Platelet Endothelial Cell Adhesion Molecule-1/metabolism , Time Factors , Tumor Burden
10.
MethodsX ; 5: 593-598, 2018.
Article in English | MEDLINE | ID: mdl-29984192

ABSTRACT

Electron microscopy as a methodology for the study of mitochondria based on morphological features is a standard technique that has experienced little evolution over the course of several decades. This technology has identified heterogeneity of mitochondria populations across both whole tissues, as well between individual cells, using primarily ultrathin sections for transmission electron microscopy (TEM). However, this technique constrains the evaluation of a sample to a single two-dimensional plane. To overcome this limitation, scanning electron microscopy (SEM) has been successfully utilized to observe three-dimensional mitochondria structures within the complex microenvironment containing total cellular components. In response to these dual technical caveats of existing electron microscopy protocols, we developed a methodology to evaluate the three-dimensional ultrastructure of isolated mitochondria, utilizing a freeze-fracture step and rigorous preservation of sample morphology. This protocol allows for a more high-throughput analysis of mitochondria populations from a specimen of interest, as the sample has been previously purified, as well as a finer resolution of complex intra-mitochondrial structures, using the depth of field created by SEM. •Protocol designed for SEM of isolated mitochondria samples.•SEM visualizes mitochondria ultrastructure in 3-D.•Freeze-fracture creates cross-sectional plane for view of interior organelle structures.

11.
Micron ; 101: 25-31, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28609725

ABSTRACT

Mitochondria are dynamic intracellular organelles with diverse roles in tissue- and cell type-specific processes, extending beyond bioenergetics. In keeping with this array of functions, mitochondria are described as heterogeneous both between and within tissue types based on multiple parameters, including a broad spectrum of morphological features, and new research points toward a need for the evaluation of mitochondria as isolated organelles. Although transmission electron microscopy (TEM) is commonly used for the evaluation of mitochondria in tissues and renders mitochondrial structures in ultra-thin sections in two-dimensions, additional information regarding complex features within these organelles can be ascertained using scanning electron microscopy (SEM), which allows for analysis of phenotypic differences in three-dimensions. One challenge in producing mitochondrial images for evaluation of ultrastructure using SEM has been the ability to reliably visualize important intramitochondrial features, the inner membrane and cristae structures, on a large-scale (e.g. multiple mitochondria) within a sample preparation, as mitochondria are enclosed within a double membrane. This can be overcome using a 'freeze-fracture' technique in which mitochondrial preparations are snap-frozen followed by application of intense pressure to break open the organelles, revealing the intact components within. Previously published reports using freeze-fracture strategies for mitochondrial SEM have demonstrated feasibility in whole tissue specimens, but a detailed methodology for SEM analysis on isolated mitochondrial fractions has not been reported. By combining previously reported tissue freeze-fracture strategies, along with utilizing the depth of field created by SEM, herein we present a complete method reliant on the freeze-fracture of mitochondrial fractions prepared by differential centrifugation to produce a comprehensive and direct evaluation of three-dimensional mitochondrial ultrastructure by SEM. Image analysis of internal mitochondrial features demonstrates heterogeneity in mitochondrial ultrastructure from a single sample preparation.


Subject(s)
Cryoelectron Microscopy/methods , Microscopy, Electron, Scanning/methods , Mitochondria/ultrastructure , Animals , Image Processing, Computer-Assisted/methods , Mice, Inbred C57BL
12.
Int J Radiat Oncol Biol Phys ; 91(2): 393-400, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25636762

ABSTRACT

PURPOSE: In radiation therapy (RT), brachytherapy-inert source spacers are commonly used in clinical practice to achieve high spatial accuracy. These implanted devices are critical technical components of precise radiation delivery but provide no direct therapeutic benefits. METHODS AND MATERIALS: Here we have fabricated implantable nanoplatforms or chemoradiation therapy (INCeRT) spacers loaded with silica nanoparticles (SNPs) conjugated containing a drug, to act as a slow-release drug depot for simultaneous localized chemoradiation therapy. The spacers are made of poly(lactic-co-glycolic) acid (PLGA) as matrix and are physically identical in size to the commercially available brachytherapy spacers (5 mm × 0.8 mm). The silica nanoparticles, 250 nm in diameter, were conjugated with near infrared fluorophore Cy7.5 as a model drug, and the INCeRT spacers were characterized in terms of size, morphology, and composition using different instrumentation techniques. The spacers were further doped with an anticancer drug, docetaxel. We evaluated the in vivo stability, biocompatibility, and biodegradation of these spacers in live mouse tissues. RESULTS: The electron microscopy studies showed that nanoparticles were distributed throughout the spacers. These INCeRT spacers remained stable and can be tracked by the use of optical fluorescence. In vivo optical imaging studies showed a slow diffusion of nanoparticles from the spacer to the adjacent tissue in contrast to the control Cy7.5-PLGA spacer, which showed rapid disintegration in a few days with a burst release of Cy7.5. The docetaxel spacers showed suppression of tumor growth in contrast to control mice over 16 days. CONCLUSIONS: The imaging with the Cy7.5 spacer and therapeutic efficacy with docetaxel spacers supports the hypothesis that INCeRT spacers can be used for delivering the drugs in a slow, sustained manner in conjunction with brachytherapy, in contrast to the rapid clearance of the drugs when administered systemically. The results demonstrate that these spacers with tailored release profiles have potential in improving the combined therapeutic efficacy of chemoradiation therapy.


Subject(s)
Brachytherapy/instrumentation , Brachytherapy/methods , Drug Implants/administration & dosage , Nanocapsules/chemistry , Neoplasms, Experimental/therapy , Silicon Dioxide/chemistry , Taxoids/administration & dosage , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Line, Tumor , Chemoradiotherapy/instrumentation , Chemoradiotherapy/methods , Docetaxel , Drug Implants/chemistry , Mice , Nanocapsules/ultrastructure , Neoplasms, Experimental/chemistry , Neoplasms, Experimental/pathology , Treatment Outcome
13.
Biomaterials ; 30(36): 6825-34, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19766306

ABSTRACT

A microfabrication approach was utilized to create topographic analogs of intestinal crypts on a polymer substrate. It was hypothesized that biomimetic crypt-like micro-architecture may induce changes in small intestinal cell (i.e. Caco-2 cell) phenotype. A test pattern of micro-well features with similar dimensions (50, 100, and 500 microm diameter, 50 microm spacing, 120 microm in depth) to the crypt structures found in native basal lamina was produced in the surface of a poly(dimethylsiloxane) (PDMS) substrate. PDMS surfaces were coated with fibronectin, seeded with intestinal-epithelial-cell-like Caco-2 cells, and cultured up to fourteen days. The cells were able to crawl along the steep side walls and migrated from the bottom to the top of the well structures, completely covering the surface by 4-5 days in culture. The topography of the PDMS substrates influenced cell spreading after seeding; cells spread faster and in a more uniform fashion on flat surfaces than on those with micro-well structures, where cell protrusions extending to micro-well side walls was evident. Substrate topography also affected cell metabolic activity and differentiation; cells had higher mitochondrial activity but lower alkaline phosphatase activity at early time points in culture (2-3 days post-seeding) when seeded on micro-well patterned PDMS substrates compared to flat substrates. These results emphasize the importance of topographical design properties of a scaffolds used for tissue engineered intestine.


Subject(s)
Biomimetics , Caco-2 Cells , Cell Culture Techniques , Epithelial Cells , Tissue Engineering , Biocompatible Materials/chemistry , Caco-2 Cells/cytology , Caco-2 Cells/metabolism , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Differentiation , Cytoskeleton/metabolism , Epithelial Cells/cytology , Epithelial Cells/metabolism , Humans , Intestinal Mucosa/cytology , Materials Testing , Surface Properties , Tissue Engineering/instrumentation , Tissue Engineering/methods
14.
Appl Environ Microbiol ; 69(11): 6856-63, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14602650

ABSTRACT

Each year, thousands of new protistan 18S rRNA sequences are detected in environmental samples. Many of these sequences are molecular signatures of new protistan species, classes, and/or kingdoms that have never been seen before. The main goal of this study was to enable visualization of these novel organisms and to conduct quality ultrastructural examination. We achieved this goal by modifying standard procedures for cell fixation, fluorescence in situ hybridization, and scanning electron microscopy (SEM) and by making these methodologies work in concert. As a result, the same individual cell can now be detected by 18S rRNA-targeted fluorochrome-labeled probes and then viewed by SEM to reveal its diagnostic morphological characteristics. The method was successfully tested on a wide range of protists (alveolates, stramenopiles, kinetoplastids, and cryptomonads). The new methodology thus opens a way for fine microscopy studies of many organisms previously known exclusively by their 18S rRNA sequences.


Subject(s)
Eukaryota/classification , Eukaryota/ultrastructure , Animals , DNA, Protozoan/analysis , DNA, Ribosomal/analysis , Eukaryota/genetics , Eukaryota/isolation & purification , In Situ Hybridization, Fluorescence , Microscopy, Electron, Scanning , Parasitology/methods , RNA, Ribosomal, 16S/genetics , Tissue Fixation/methods
SELECTION OF CITATIONS
SEARCH DETAIL