Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
J Pain ; 23(6): 1060-1070, 2022 06.
Article in English | MEDLINE | ID: mdl-35045354

ABSTRACT

Low back pain (LBP) is complex. This study aimed to use collaborative modeling to evaluate conceptual models that individuals with LBP have of their condition, and to compare these models with those of researchers/clinicians. Twenty-eight individuals with LBP were facilitated to generate mental models, using "fuzzy cognitive maps," that represented conceptualization of their own LBP and LBP "in general." "Components" (ie, causes, outcomes and treatments) related to pain, disability and quality of life were proposed, along with the weighted "Connections" between Components. Components were classified into thematic categories. Weighting of Connections were summed for each Component to judge relative importance. Individual models were aggregated into a metamodel. When considering their own condition, participants' models included 19(SD = 6) Components and 43(18) Connections with greatest weight on "Biomechanical" components. When considering LBP in general, models changed slightly. Patient models contrasted the more complex models of researchers/clinicians (25(7) Components; 77(42) Connections), with most weight on "Psychological" components. This study provides unique insight into how individuals with LBP consider their condition, which is largely biomedical and narrower than clinician/researcher perspectives. Findings highlight challenges for changing public perception of LBP, and provide a method with potential utility to understand how individuals conceptualize their condition. PERSPECTIVE: Collaborative modeling was used to understand how individuals with low back pain conceptualize their own condition, the condition in general, and compare this with models of expert researchers/clinicians. Data revealed issues in how individuals with back pain conceptualize their condition, and the method's potential utility for clinical evaluation of patients.


Subject(s)
Low Back Pain , Humans , Low Back Pain/psychology , Models, Psychological , Quality of Life
2.
PLoS One ; 10(4): e0123425, 2015.
Article in English | MEDLINE | ID: mdl-25875205

ABSTRACT

Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10-20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15-28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.


Subject(s)
Sound , Animals , Antarctic Regions , Balaenoptera/physiology , Fin Whale/physiology , Noise , Oceans and Seas , Sound Spectrography , Vocalization, Animal
SELECTION OF CITATIONS
SEARCH DETAIL