Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Int J Mol Sci ; 24(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37047429

ABSTRACT

DJ-1 is a redox sensitive protein with a wide range of functions related to oxidative stress protection. Mutations in the park7 gene, which codes for DJ-1 are associated with early onset familial Parkinson's disease and increased astrocytic DJ-1 levels are found in pathologic tissues from idiopathic Parkinson's disease. We have previously established a DJ-1 knockout zebrafish line that developed normally, but with aging the DJ-1 null fish had a lowered level of tyrosine hydroxylase, respiratory mitochondrial failure and a lower body mass. Here we have examined the DJ-1 knockout from the early adult stage and show that loss of DJ-1 results in a progressive, age-dependent increase in both motoric and non-motoric symptoms associated to Parkinson's disease. These changes coincide with changes in mitochondrial and mitochondrial associated proteins. Recent studies have suggested that a decline in NAD+ can contribute to Parkinson's disease and that supplementation of NAD+ precursors may delay disease progression. We found that the brain NAD+/NADH ratio decreased in aging zebrafish but did not correlate with DJ-1 induced altered behavior. Differences were first observed at the late adult stage in which NAD+ and NADPH levels were decreased in DJ-1 knockouts. Considering the experimental power of zebrafish and the development of Parkinson's disease-related symptoms in the DJ-1 null fish, this model can serve as a useful tool both to understand the progression of the disease and the effect of suggested treatments.


Subject(s)
Parkinson Disease , Animals , Parkinson Disease/metabolism , Zebrafish/genetics , Zebrafish/metabolism , NAD/metabolism , Brain/metabolism , Protein Deglycase DJ-1/genetics , Protein Deglycase DJ-1/metabolism
2.
Antioxidants (Basel) ; 10(12)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34942966

ABSTRACT

The eye is continuously under oxidative stress due to high metabolic activity and reactive oxygen species generated by daily light exposure. The redox-sensitive protein DJ-1 has proven to be essential in order to protect retina and retinal pigment epithelium (RPE) from oxidative-stress-induced degeneration. Here, we analyzed the specific role of Müller cell DJ-1 in the adult zebrafish retina by re-establishing Müller-cell-specific DJ-1 expression in a DJ-1 knockout retina. Loss of DJ-1 resulted in an age-dependent retinal degeneration, including loss of cells in the ganglion cell layer, retinal thinning, photoreceptor disorganization and RPE cell dysfunction. The degenerative phenotype induced by the absence of DJ-1 was inhibited by solely expressing DJ-1 in Müller cells. The protective effect was dependent upon the cysteine-106 residue of DJ-1, which has been shown to be an oxidative sensor of DJ-1. In a label-free proteomics analysis of isolated retinas, we identified proteins differentially expressed after DJ-1 knockout, but with restored levels after Müller cell DJ-1 re-insertion. Our data show that Müller cell DJ-1 has a major role in protecting the retina from age-dependent oxidative stress.

3.
Mol Neurobiol ; 56(12): 8306-8322, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31218647

ABSTRACT

DJ-1 is a protein with a wide range of functions importantly related to redox regulation in the cell. In humans, dysfunction of the PARK7 gene is associated with neurodegeneration and Parkinson's disease. Our objective was to establish a novel DJ-1 knockout zebrafish line and to identify early brain proteome changes, which could be linked to later pathology. The CRISPR-Cas9 method was used to target exon 1 of the park7-/- gene to produce a transgenic DJ-1-deficient zebrafish model of Parkinson's disease. Label-free mass spectrometry was employed to identify altered protein expression in the DJ-1 null brain of early adult animals. The park7-/- line appears to develop normally at young adult and larval stages. With aging however, DJ-1 null fish exhibit lower tyrosine hydroxylase levels, respiratory failure in skeletal muscle, and lower body mass which is especially prevalent among male fish. By proteomic analysis of early adult brains, we determined that less than 5% of the 4091 identified proteins were influenced by the lack of DJ-1. The dysregulated proteins were mainly proteins known to be involved in mitochondrial metabolism, mitophagy, stress response, redox regulation, and inflammation. This dysregulation in protein networks of our novel DJ-1-deficient zebrafish model occurs in the early adult stage preceding a Parkinson's disease-related phenotype and the reduction of tyrosine hydroxylase level. The identified protein changes provide new mechanistic background for DJ-1 function. The experimental power of zebrafish makes this model a highly valuable tool to understand and modulate cellular signaling leading to neurodegeneration.


Subject(s)
Brain/metabolism , Nerve Tissue Proteins/deficiency , Proteome/metabolism , Zebrafish Proteins/deficiency , Zebrafish/metabolism , Animals , Base Sequence , Electron Transport Complex I/metabolism , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Nerve Tissue Proteins/metabolism , Protein Interaction Maps , Tyrosine 3-Monooxygenase/metabolism , Zebrafish Proteins/metabolism
4.
Redox Biol ; 16: 237-247, 2018 06.
Article in English | MEDLINE | ID: mdl-29525604

ABSTRACT

DJ-1, a Parkinson's disease-associated protein, is strongly up-regulated in reactive astrocytes in Parkinson's disease. This is proposed to represent a neuronal protective response, although the mechanism has not yet been identified. We have generated a transgenic zebrafish line with increased astroglial DJ-1 expression driven by regulatory elements from the zebrafish GFAP gene. Larvae from this transgenic line are protected from oxidative stress-induced injuries as caused by MPP+, a mitochondrial complex I inhibitor shown to induce dopaminergic cells death. In a global label-free proteomics analysis of wild type and transgenic larvae exposed to MPP+, 3418 proteins were identified, in which 366 proteins were differentially regulated. In particular, we identified enzymes belonging to primary metabolism to be among proteins affected by MPP+ in wild type animals, but not affected in the transgenic line. Moreover, by performing protein profiling on isolated astrocytes we showed that an increase in astrocytic DJ-1 expression up-regulated a large group of proteins associated with redox regulation, inflammation and mitochondrial respiration. The majority of these proteins have also been shown to be regulated by Nrf2. These findings provide a mechanistic insight into the protective role of astroglial up-regulation of DJ-1 and show that our transgenic zebrafish line with astrocytic DJ-1 over-expression can serve as a useful animal model to understand astrocyte-regulated neuroprotection associated with oxidative stress-related neurodegenerative disease.


Subject(s)
Inflammation/genetics , NF-E2-Related Factor 2/genetics , Parkinson Disease/genetics , Protein Deglycase DJ-1/genetics , Zebrafish Proteins/genetics , Animals , Animals, Genetically Modified/genetics , Astrocytes/metabolism , Astrocytes/pathology , Disease Models, Animal , Dopaminergic Neurons/metabolism , Gene Expression Regulation, Enzymologic , Humans , Inflammation/pathology , Larva/genetics , Mitochondria/genetics , Mitochondria/pathology , NF-E2-Related Factor 2/metabolism , Neuroprotective Agents/metabolism , Oxidation-Reduction , Oxidative Stress , Parkinson Disease/metabolism , Parkinson Disease/pathology , Protein Deglycase DJ-1/metabolism , Zebrafish/genetics , Zebrafish Proteins/metabolism
5.
Sci Rep ; 6: 29631, 2016 07 12.
Article in English | MEDLINE | ID: mdl-27404450

ABSTRACT

The non-protein amino acid ß-methylamino-L-alanine (BMAA) is a neurotoxin present in microalgae and shown to accumulate in the food web. BMAA has been linked to the complex neurodegenerative disorder of Guam and to increased incidents sporadic ALS. Two main neurotoxic routes are suggested; an excitotoxic by acting as an agonist towards glutamate receptors and a metabolic by misincorporating into cellular proteins. We have used zebrafish, an increasingly used model for neurodegenerative diseases, to further identify signaling components involved in BMAA-induced toxicity. Zebrafish embryos were exposed to sub-lethal dosages of BMAA and a label-free proteomics analysis was conducted on larvae 4 days post fertilization. The exposed larvae showed no developmental abnormalities, but a reduced heart rate and increased expression of GSK3 isoforms. Search towards a reviewed database containing 2968 entries identified 480 proteins. Only 17 of these were regulated 2-fold or more in the exposed larvae. Seven of these proteins could be associated to glutamate receptor signaling and recycling. The remaining nine have all been linked to disturbance in protein homeostasis, reactive oxygen species (ROS) development or neuronal cell death. We also found that BMAA influenced the endocannabinoid system by up-regulation of fatty acid amide hydrolase (FAAH) and that FAAH inhibitor URB597 reduced the BMAA effect on heart rate and GSK3 expression.


Subject(s)
Amino Acids, Diamino/administration & dosage , Fish Proteins/metabolism , Zebrafish/metabolism , Animals , Cyanobacteria Toxins , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta/metabolism , Heart Rate , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL