Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Phytopathology ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875168

ABSTRACT

Austropuccinia psidii is the causal pathogen of myrtle rust disease of Myrtaceae. To gain understanding of the initial infection process, gene expression in germinating Austropuccinia psidii urediniospores and in Leptospermum scoparium inoculated leaves were investigated via analyses of RNAseq samples taken 24 and 48 hours post inoculation (hpi). Principal component analyses of transformed transcript count data revealed differential gene expression between the uninoculated L. scoparium control plants that correlated with the three plant leaf resistance phenotypes (immunity, hypersensitive response and susceptibility). Gene expression in the immune resistant plants did not significantly change in response to fungal inoculation, while susceptible plants showed differential expression of genes in response to fungal challenge. A putative disease resistance gene, jg24539.t1, was identified in the L. scoparium hypersensitive response phenotype family. Expression of this gene may be associated with the phenotype and could be important for further understanding the plant hypersensitive response to A. psidii challenge. Differential expression of pathogen genes was found between samples taken 24 and 48 hpi, but there were no significant differences in pathogen gene expression that were associated with the three different plant leaf resistance phenotypes. There was a significant decrease in the abundance of fungal transcripts encoding three putative effectors and a putative carbohydrate-active enzyme between 24 and 48 hpi, suggesting that the encoded proteins are important during the initial phase of infection. These transcripts, or their translated proteins, may be potential targets to impede the early phases of fungal infection by this wide-host range obligate biotrophic basidiomycete.

2.
Environ Microbiol ; 24(10): 4834-4852, 2022 10.
Article in English | MEDLINE | ID: mdl-35912527

ABSTRACT

Bacterial pathogens are major causes of crop diseases, leading to significant production losses. For instance, kiwifruit canker, caused by the phytopathogen Pseudomonas syringae pv. actinidiae (Psa), has posed a global challenge to kiwifruit production. Treatment with copper and antibiotics, whilst initially effective, is leading to the rise of bacterial resistance, requiring new biocontrol approaches. Previously, we isolated a group of closely related Psa phages with biocontrol potential, which represent environmentally sustainable antimicrobials. However, their deployment as antimicrobials requires further insight into their properties and infection strategy. Here, we provide an in-depth examination of the genome of ΦPsa374-like phages and show that they use lipopolysaccharides (LPS) as their main receptor. Through proteomics and cryo-electron microscopy of ΦPsa374, we revealed the structural proteome and that this phage possess a T = 9 capsid triangulation, unusual for myoviruses. Furthermore, we show that ΦPsa374 phage resistance arises in planta through mutations in a glycosyltransferase involved in LPS synthesis. Lastly, through in vitro evolution experiments we showed that phage resistance is overcome by mutations in a tail fibre and structural protein of unknown function in ΦPsa374. This study provides new insight into the properties of ΦPsa374-like phages that informs their use as antimicrobials against Psa.


Subject(s)
Actinidia , Bacteriophages , Actinidia/microbiology , Anti-Bacterial Agents , Bacteriophages/genetics , Copper , Cryoelectron Microscopy , Glycosyltransferases , Lipopolysaccharides , Plant Diseases/microbiology , Proteome , Pseudomonas syringae/genetics
3.
Plant Dis ; 106(10): 2571-2575, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35285263

ABSTRACT

Following the detection of potato mop-top virus (PMTV) in New Zealand in 2018, three near-complete PMTV genomes (AS22, AS99, AS144) were assembled from soil samples taken from potato fields in Canterbury. Phylogenetic analysis revealed that these genomes form a distinct lineage, with limited genetic diversity, within the PMTV species. This analysis supports the hypothesis that these genomes share a common origin, possibly resulting from a single (or limited) incursion of PMTV into New Zealand. A single nucleotide polymorphism was identified in the region where a key diagnostic primer binds. The mismatch of the diagnostic primer has implications for the effectiveness of the Mumford diagnostic protocol currently recommended for use in New Zealand; we recommend that the alternative Pandey assay, for which no primer mismatch was detected, be validated and optimized for use on the viral genomes present in New Zealand.


Subject(s)
Plant Viruses , RNA Viruses , New Zealand , Phylogeny , Plant Diseases , RNA Viruses/genetics , Soil
4.
Phytopathology ; 109(7): 1141-1148, 2019 Jul.
Article in English | MEDLINE | ID: mdl-30887888

ABSTRACT

'Candidatus Liberibacter solanacearum' is an unculturable α-proteobacterium that is the causal agent of zebra chip disease of potato-a major problem in potato-growing areas, because it affects growth and yield. Developing effective treatments for 'Ca. L. solanacearum' has been hampered by the difficulty in functionally characterizing the proteins of this organism, largely because they are not easily expressed and purified in standard expression systems. 'Ca. L. solanacearum' has a reduced genome and its proteins are predicted to be prone to instability and aggregation. Among intracellular-dwelling bacteria, chaperone proteins are conserved and overexpressed to buffer against problems in protein folding. We mimicked this approach for expressing and purifying 'Ca. L. solanacearum' proteins in Escherichia coli by coexpressing them with chaperones. Neither of the representative 'Ca. L. solanacearum' enzymes, dihydrodipicolinate synthase (key in lysine biosynthesis) and pyruvate kinase (involved in glycolysis), were overexpressed in standard E. coli expression plasmids or strains. However, soluble dihydrodipicolinate synthase was successfully coexpressed with GroEL/GroES, while soluble pyruvate kinase was successfully coexpressed with either GroEL/GroES, dnaK/dnaJ/grpE, or a trigger factor. Both enzymes, believed to be key proteins for the organism, were purified by a combination of affinity chromatography and size-exclusion chromatography. Additionally, both 'Ca. L. solanacearum' enzymes are active and have the canonical tetrameric oligomeric structure in solution, consistent with other bacterial orthologs. This is the first study to successfully isolate and functionally characterize proteins from 'Ca. L. solanacearum'. Thus, we provide a general strategy for characterizing its proteins, enabling new research and drug discovery programs to study and manage the pathogenicity of the organism.


Subject(s)
Plant Diseases/microbiology , Rhizobiaceae , Solanum tuberosum , Escherichia coli , Plasmids , Solanum tuberosum/microbiology
5.
BMC Bioinformatics ; 18(1): 26, 2017 Jan 11.
Article in English | MEDLINE | ID: mdl-28077064

ABSTRACT

BACKGROUND: Detection and preventing entry of exotic viruses and viroids at the border is critical for protecting plant industries trade worldwide. Existing post entry quarantine screening protocols rely on time-consuming biological indicators and/or molecular assays that require knowledge of infecting viral pathogens. Plants have developed the ability to recognise and respond to viral infections through Dicer-like enzymes that cleave viral sequences into specific small RNA products. Many studies reported the use of a broad range of small RNAs encompassing the product sizes of several Dicer enzymes involved in distinct biological pathways. Here we optimise the assembly of viral sequences by using specific small RNA subsets. RESULTS: We sequenced the small RNA fractions of 21 plants held at quarantine glasshouse facilities in Australia and New Zealand. Benchmarking of several de novo assembler tools yielded SPAdes using a kmer of 19 to produce the best assembly outcomes. We also found that de novo assembly using 21-25 nt small RNAs can result in chimeric assemblies of viral sequences and plant host sequences. Such non-specific assemblies can be resolved by using 21-22 nt or 24 nt small RNAs subsets. Among the 21 selected samples, we identified contigs with sequence similarity to 18 viruses and 3 viroids in 13 samples. Most of the viruses were assembled using only 21-22 nt long virus-derived siRNAs (viRNAs), except for one Citrus endogenous pararetrovirus that was more efficiently assembled using 24 nt long viRNAs. All three viroids found in this study were fully assembled using either 21-22 nt or 24 nt viRNAs. Optimised analysis workflows were customised within the Yabi web-based analytical environment. We present a fully automated viral surveillance and diagnosis web-based bioinformatics toolkit that provides a flexible, user-friendly, robust and scalable interface for the discovery and diagnosis of viral pathogens. CONCLUSIONS: We have implemented an automated viral surveillance and diagnosis (VSD) bioinformatics toolkit that produces improved viruses and viroid sequence assemblies. The VSD toolkit provides several optimised and reusable workflows applicable to distinct viral pathogens. We envisage that this resource will facilitate the surveillance and diagnosis viral pathogens in plants, insects and invertebrates.


Subject(s)
Computational Biology , Plant Diseases/virology , Plant Viruses/genetics , RNA, Plant/analysis , RNA, Viral/analysis , Viroids/genetics , Australia , Internet , New Zealand , Plant Diseases/genetics , RNA, Small Interfering/analysis
6.
Phytopathology ; 105(7): 863-71, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25822188

ABSTRACT

'Candidatus Liberibacter solanacearum' contains two solanaceous crop-infecting haplotypes, A and B. Two haplotype A draft genomes were assembled and compared with ZC1 (haplotype B), revealing inversion and relocation genomic rearrangements, numerous single-nucleotide polymorphisms, and differences in phage-related regions. Differences in prophage location and sequence were seen both within and between haplotype comparisons. OrthoMCL and BLAST analyses identified 46 putative coding sequences present in haplotype A that were not present in haplotype B. Thirty-eight of these loci were not found in sequences from other Liberibacter spp. Quantitative polymerase chain reaction (qPCR) assays designed to amplify sequences from 15 of these loci were screened against a panel of 'Ca. L. solanacearum'-positive samples to investigate genetic diversity. Seven of the assays demonstrated within-haplotype diversity; five failed to amplify loci in at least one haplotype A sample while three assays produced amplicons from some haplotype B samples. Eight of the loci assays showed consistent A-B differentiation. Differences in genome arrangements, prophage, and qPCR results suggesting locus diversity within the haplotypes provide more evidence for genetic complexity in this emerging bacterial species.


Subject(s)
Genome, Bacterial , Rhizobiaceae/genetics , Solanaceae/microbiology , Haplotypes , Molecular Sequence Data , New Zealand , United States
7.
Biochim Biophys Acta ; 1829(6-7): 523-31, 2013.
Article in English | MEDLINE | ID: mdl-23454553

ABSTRACT

Toxin-antitoxin (TA) systems are widespread in bacteria and archaea and play important roles in a diverse range of cellular activities. TA systems have been broadly classified into 5 types and the targets of the toxins are diverse, but the most frequently used cellular target is mRNA. Toxins that target mRNA to inhibit translation can be classified as ribosome-dependent or ribosome-independent RNA interferases. These RNA interferases are sequence-specific endoribonucleases that cleave RNA at specific sequences. Despite limited sequence similarity, ribosome-independent RNA interferases belong to a limited number of structural classes. The MazF structural family includes MazF, Kid, ParE and CcdB toxins. MazF members cleave mRNA at 3-, 5- or 7-base recognition sequences in different bacteria and have been implicated in controlling cell death (programmed) and cell growth, and cellular responses to nutrient starvation, antibiotics, heat and oxidative stress. VapC endoribonucleases belong to the PIN-domain family and inhibit translation by either cleaving tRNA(fMet) in the anticodon stem loop, cleaving mRNA at -AUA(U/A)-hairpin-G- sequences or by sequence-specific RNA binding. VapC has been implicated in controlling bacterial growth in the intracellular environment and in microbial adaptation to nutrient limitation (nitrogen, carbon) and heat shock. ToxN shows structural homology to MazF and is also a sequence-specific endoribonuclease. ToxN confers phage resistance by causing cell death upon phage infection by cleaving cellular and phage RNAs, thereby interfering with bacterial and phage growth. Notwithstanding our recent progress in understanding ribonuclease action and function in TA systems, the environmental triggers that cause release of the toxin from its cognate antitoxin and the precise cellular function of these systems in many bacteria remain to be discovered. This article is part of a Special Issue entitled: RNA Decay mechanisms.


Subject(s)
Antitoxins/genetics , Bacterial Toxins/genetics , Endoribonucleases/genetics , RNA Stability/genetics , Antitoxins/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Toxins/chemistry , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Dichelobacter nodosus/enzymology , Endoribonucleases/chemistry , Escherichia coli/enzymology , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/genetics , RNA, Messenger/chemistry , RNA, Messenger/genetics , Ribosomes/genetics
8.
Appl Environ Microbiol ; 80(7): 2216-28, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24487530

ABSTRACT

Pseudomonas syringae pv. actinidiae is a reemerging pathogen which causes bacterial canker of kiwifruit (Actinidia sp.). Since 2008, a global outbreak of P. syringae pv. actinidiae has occurred, and in 2010 this pathogen was detected in New Zealand. The economic impact and the development of resistance in P. syringae pv. actinidiae and other pathovars against antibiotics and copper sprays have led to a search for alternative management strategies. We isolated 275 phages, 258 of which were active against P. syringae pv. actinidiae. Extensive host range testing on P. syringae pv. actinidiae, other pseudomonads, and bacteria isolated from kiwifruit orchards showed that most phages have a narrow host range. Twenty-four were analyzed by electron microscopy, pulse-field gel electrophoresis, and restriction digestion. Their suitability for biocontrol was tested by assessing stability and the absence of lysogeny and transduction. A detailed host range was performed, phage-resistant bacteria were isolated, and resistance to other phages was examined. The phages belonged to the Caudovirales and were analyzed based on morphology and genome size, which showed them to be representatives of Myoviridae, Podoviridae, and Siphoviridae. Twenty-one Myoviridae members have similar morphologies and genome sizes yet differ in restriction patterns, host range, and resistance, indicating a closely related group. Nine of these Myoviridae members were sequenced, and each was unique. The most closely related sequenced phages were a group infecting Pseudomonas aeruginosa and characterized by phages JG004 and PAK_P1. In summary, this study reports the isolation and characterization of P. syringae pv. actinidiae phages and provides a framework for the intelligent formulation of phage biocontrol agents against kiwifruit bacterial canker.


Subject(s)
Caudovirales/isolation & purification , DNA, Viral/genetics , Host Specificity , Pseudomonas Phages/isolation & purification , Pseudomonas syringae/virology , Virion/ultrastructure , Actinidia/microbiology , Caudovirales/genetics , Caudovirales/physiology , Caudovirales/ultrastructure , DNA, Viral/chemistry , Electrophoresis, Gel, Pulsed-Field , Molecular Sequence Data , New Zealand , Plant Diseases/microbiology , Polymorphism, Restriction Fragment Length , Pseudomonas Phages/genetics , Pseudomonas Phages/physiology , Pseudomonas Phages/ultrastructure , Sequence Analysis, DNA
9.
Protein Sci ; 33(7): e5083, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38924211

ABSTRACT

The effect of population bottlenecks and genome reduction on enzyme function is poorly understood. Candidatus Liberibacter solanacearum is a bacterium with a reduced genome that is transmitted vertically to the egg of an infected psyllid-a population bottleneck that imposes genetic drift and is predicted to affect protein structure and function. Here, we define the function of Ca. L. solanacearum dihydrodipicolinate synthase (CLsoDHDPS), which catalyzes the committed branchpoint reaction in diaminopimelate and lysine biosynthesis. We demonstrate that CLsoDHDPS is expressed in Ca. L. solanacearum and expression is increased ~2-fold in the insect host compared to in planta. CLsoDHDPS has decreased thermal stability and increased aggregation propensity, implying mutations have destabilized the enzyme but are compensated for through elevated chaperone expression and a stabilized oligomeric state. CLsoDHDPS uses a ternary-complex kinetic mechanism, which is to date unique among DHDPS enzymes, has unusually low catalytic ability, but an unusually high substrate affinity. Structural studies demonstrate that the active site is more open, and the structure of CLsoDHDPS with both pyruvate and the substrate analogue succinic-semialdehyde reveals that the product is both structurally and energetically different and therefore evolution has in this case fashioned a new enzyme. Our study suggests the effects of genome reduction and genetic drift on the function of essential enzymes and provides insights on bacteria-host co-evolutionary associations. We propose that bacteria with endosymbiotic lifestyles present a rich vein of interesting enzymes useful for understanding enzyme function and/or informing protein engineering efforts.


Subject(s)
Genetic Drift , Genome, Bacterial , Lysine , Symbiosis , Lysine/biosynthesis , Lysine/metabolism , Lysine/genetics , Hydro-Lyases/genetics , Hydro-Lyases/chemistry , Hydro-Lyases/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Animals
10.
J Biol Chem ; 287(8): 5340-56, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22199354

ABSTRACT

The role of chromosomal toxin-antitoxin (TA) modules in bacterial physiology remains enigmatic despite their abundance in the genomes of many bacteria. Mycobacterium smegmatis contains three putative TA systems, VapBC, MazEF, and Phd/Doc, and previous work from our group has shown VapBC to be a bona fide TA system. In this study, we show that MazEF and Phd/Doc are also TA systems that are constitutively expressed, transcribed as leaderless transcripts, and subject to autoregulation, and expression of the toxin component leads to growth inhibition that can be rescued by the cognate antitoxin. No phenotype was identified for deletions of the individual TA systems, but a triple deletion strain (ΔvapBC, mazEF, phd/doc), designated ΔTA(triple), exhibited a survival defect in complex growth medium demonstrating an essential role for these TA modules in mycobacterial survival. Transcriptomic analysis revealed no significant differences in gene expression between wild type and the ΔTA(triple) mutant under these conditions suggesting that the growth defect was not at a transcriptional level. Metabolomic analysis demonstrated that in response to starvation in complex medium, both the wild type and ΔTA(triple) mutant consumed a wide range of amino acids from the external milieu. Analysis of intracellular metabolites revealed a significant difference in the levels of branched-chain amino acids between the wild type and ΔTA(triple) mutant, which are proposed to play essential roles in monitoring the nutritional supply and physiological state of the cell and linking catabolic with anabolic reactions. Disruption of this balance in the ΔTA(triple) mutant may explain the survival defect in complex growth medium.


Subject(s)
Antitoxins/metabolism , Bacterial Toxins/metabolism , Mycobacterium smegmatis/cytology , Mycobacterium smegmatis/metabolism , Antitoxins/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/genetics , Base Sequence , Cell Death , Gene Expression Regulation, Bacterial , Metabolomics , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/growth & development , Operon/genetics , Promoter Regions, Genetic/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sequence Deletion , Sequence Homology, Nucleic Acid , Transcription, Genetic
11.
Viruses ; 14(2)2022 01 26.
Article in English | MEDLINE | ID: mdl-35215841

ABSTRACT

A new dsRNA virus from the oomycete Phytophthora pluvialis has been characterized and designated as Phytophthora pluvialis RNA virus 1 (PplRV1). The genome of the PplRV1 reference genome is 6742 bp that encodes two predicted open reading frames (ORFs). ORF1 and ORF2 overlap by a 47 nt "slippery" frameshift sequence. ORF1 encodes a putative protein of unknown function. ORF2 shows high similarity to the RNA-dependent RNA polymerase (RdRp) of other dsRNA viruses. Phylogenetic analysis of the putative PplRV1 RdRp and its most closely related viruses showed PplRV1 is distinct from other known viruses (below 33% amino acid similarity), which indicates this virus may belong to a new virus family. Analyses of the geographical distribution of PplRV1 in relation to two genetically distinct classes of its host revealed two corresponding genotypes of the PplRV1 (termed a and b), which share 92.3% nt identity. The reference genome for the second genotype is 6760 bp long and a prediction of its genetic organization shows three ORFs, with ORF2 being split into two ORFs, ORF2a and ORF2b, that is conserved in seven of eleven genotype b isolates. Additionally, a quick and simple diagnostic method using qPCR has been developed, which is suitable for large scale screens to identify PplRV1 in Phytophthora.


Subject(s)
Double Stranded RNA Viruses/genetics , Phytophthora/virology , Amino Acid Sequence , Double Stranded RNA Viruses/classification , Genome, Viral/genetics , Genotype , New Zealand , Open Reading Frames , Phylogeny , RNA, Viral/genetics , RNA-Dependent RNA Polymerase/genetics , Species Specificity
12.
Microbiol Resour Announc ; 8(22)2019 May 30.
Article in English | MEDLINE | ID: mdl-31147429

ABSTRACT

Bacteriophage ϕPsa21 is a potential biocontrol agent that infects the kiwifruit phytopathogen Pseudomonas syringae pv. actinidiae. ϕPsa21 is a "jumbo" phage with a genome of ∼305 kb. Here, we present the genome sequence of ϕPsa21 and discuss potential genes indicative of the formation of nucleoid structures during viral replication.

13.
PeerJ ; 6: e6090, 2018.
Article in English | MEDLINE | ID: mdl-30581677

ABSTRACT

Rapid and transient changes in pH frequently occur in soil, impacting dissolved organic matter (DOM) and other chemical attributes such as redox and oxygen conditions. Although we have detailed knowledge on microbial adaptation to long-term pH changes, little is known about the response of soil microbial communities to rapid pH change, nor how excess DOM might affect key aspects of microbial N processing. We used potassium hydroxide (KOH) to induce a range of soil pH changes likely to be observed after livestock urine or urea fertilizer application to soil. We also focus on nitrate reductive processes by incubating microcosms under anaerobic conditions for up to 48 h. Soil pH was elevated from 4.7 to 6.7, 8.3 or 8.8, and up to 240-fold higher DOM was mobilized by KOH compared to the controls. This increased microbial metabolism but there was no correlation between DOM concentrations and CO2 respiration nor N-metabolism rates. Microbial communities became dominated by Firmicutes bacteria within 16 h, while few changes were observed in the fungal communities. Changes in N-biogeochemistry were rapid and denitrification enzyme activity (DEA) increased up to 25-fold with the highest rates occurring in microcosms at pH 8.3 that had been incubated for 24-hour prior to measuring DEA. Nitrous oxide reductase was inactive in the pH 4.7 controls but at pH 8.3 the reduction rates exceeded 3,000 ng N2-N g-1 h-1 in the presence of native DOM. Evidence for dissimilatory nitrate reduction to ammonium and/or organic matter mineralisation was observed with ammonium increasing to concentrations up to 10 times the original native soil concentrations while significant concentrations of nitrate were utilised. Pure isolates from the microcosms were dominated by Bacillus spp. and exhibited varying nitrate reductive potential.

14.
Genome Announc ; 6(20)2018 May 17.
Article in English | MEDLINE | ID: mdl-29773636

ABSTRACT

Here, we report the draft genome sequence of "Candidatus Liberibacter europaeus" ASNZ1, assembled from broom psyllids (Arytainilla spartiophila) from New Zealand. The assembly comprises 15 contigs, with a total length of 1.33 Mb and a G+C content of 33.5%.

15.
Viruses ; 7(7): 3361-79, 2015 Jun 24.
Article in English | MEDLINE | ID: mdl-26114474

ABSTRACT

Pseudomonas syringae pv. actinidiae is an economically significant pathogen responsible for severe bacterial canker of kiwifruit (Actinidia sp.). Bacteriophages infecting this phytopathogen have potential as biocontrol agents as part of an integrated approach to the management of bacterial canker, and for use as molecular tools to study this bacterium. A variety of bacteriophages were previously isolated that infect P. syringae pv. actinidiae, and their basic properties were characterized to provide a framework for formulation of these phages as biocontrol agents. Here, we have examined in more detail φPsa17, a phage with the capacity to infect a broad range of P. syringae pv. actinidiae strains and the only member of the Podoviridae in this collection. Particle morphology was visualized using cryo-electron microscopy, the genome was sequenced, and its structural proteins were analysed using shotgun proteomics. These studies demonstrated that φPsa17 has a 40,525 bp genome, is a member of the T7likevirus genus and is closely related to the pseudomonad phages φPSA2 and gh-1. Eleven structural proteins (one scaffolding) were detected by proteomics and φPsa17 has a capsid of approximately 60 nm in diameter. No genes indicative of a lysogenic lifecycle were identified, suggesting the phage is obligately lytic. These features indicate that φPsa17 may be suitable for formulation as a biocontrol agent of P. syringae pv. actinidiae.


Subject(s)
Actinidia/microbiology , Bacteriophages/genetics , Genome, Viral , Plant Diseases/microbiology , Podoviridae/genetics , Proteome/metabolism , Pseudomonas syringae/virology , Viral Proteins/genetics , Bacteriophages/chemistry , Bacteriophages/isolation & purification , Bacteriophages/metabolism , Fruit/microbiology , Podoviridae/chemistry , Podoviridae/isolation & purification , Podoviridae/metabolism , Proteome/chemistry , Proteome/genetics , Pseudomonas syringae/physiology , Viral Proteins/chemistry , Viral Proteins/metabolism
16.
Int J Microbiol ; 2012: 326452, 2012.
Article in English | MEDLINE | ID: mdl-22934116

ABSTRACT

There is continuing pressure to maximise food production given a growing global human population. Bacterial pathogens that infect important agricultural plants (phytopathogens) can reduce plant growth and the subsequent crop yield. Currently, phytopathogens are controlled through management programmes, which can include the application of antibiotics and copper sprays. However, the emergence of resistant bacteria and the desire to reduce usage of toxic products that accumulate in the environment mean there is a need to develop alternative control agents. An attractive option is the use of specific bacteriophages (phages), viruses that specifically kill bacteria, providing a more targeted approach. Typically, phages that target the phytopathogen are isolated and characterised to determine that they have features required for biocontrol. In addition, suitable formulation and delivery to affected plants are necessary to ensure the phages survive in the environment and do not have a deleterious effect on the plant or target beneficial bacteria. Phages have been isolated for different phytopathogens and have been used successfully in a number of trials and commercially. In this paper, we address recent progress in phage-mediated control of plant pathogens and overcoming the challenges, including those posed by CRISPR/Cas and abortive infection resistance systems.

SELECTION OF CITATIONS
SEARCH DETAIL