Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Plant J ; 117(2): 590-598, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37882414

ABSTRACT

The Pisum sativum (pea) mutants degenerate leaves (dgl) and bronze (brz) accumulate large amounts of iron in leaves. First described several decades ago, the two mutants have provided important insights into iron homeostasis in plants but the underlying mutations have remained unknown. Using exome sequencing we identified an in-frame deletion associated with dgl in a BRUTUS homolog. The deletion is absent from wild type and the original parent line. BRUTUS belongs to a small family of E3 ubiquitin ligases acting as negative regulators of iron uptake in plants. The brz mutation was previously mapped to chromosome 4, and superimposing this region to the pea genome sequence uncovered a mutation in OPT3, encoding an oligopeptide transporter with a plant-specific role in metal transport. The causal nature of the mutations was confirmed by additional genetic analyses. Identification of the mutated genes rationalizes many of the previously described phenotypes and provides new insights into shoot-to-root signaling of iron deficiency. Furthermore, the non-lethal mutations in these essential genes suggest new strategies for biofortification of crops with iron.


Subject(s)
Iron , Pisum sativum , Iron/metabolism , Pisum sativum/genetics , Metals , Plant Leaves/genetics , Plant Leaves/metabolism , Membrane Transport Proteins/genetics
2.
PLoS Pathog ; 17(3): e1009368, 2021 03.
Article in English | MEDLINE | ID: mdl-33647072

ABSTRACT

Arms race co-evolution drives rapid adaptive changes in pathogens and in the immune systems of their hosts. Plant intracellular NLR immune receptors detect effectors delivered by pathogens to promote susceptibility, activating an immune response that halts colonization. As a consequence, pathogen effectors evolve to escape immune recognition and are highly variable. In turn, NLR receptors are one of the most diverse protein families in plants, and this variability underpins differential recognition of effector variants. The molecular mechanisms underlying natural variation in effector recognition by NLRs are starting to be elucidated. The rice NLR pair Pik-1/Pik-2 recognizes AVR-Pik effectors from the blast fungus Magnaporthe oryzae, triggering immune responses that limit rice blast infection. Allelic variation in a heavy metal associated (HMA) domain integrated in the receptor Pik-1 confers differential binding to AVR-Pik variants, determining resistance specificity. Previous mechanistic studies uncovered how a Pik allele, Pikm, has extended recognition to effector variants through a specialized HMA/AVR-Pik binding interface. Here, we reveal the mechanistic basis of extended recognition specificity conferred by another Pik allele, Pikh. A single residue in Pikh-HMA increases binding to AVR-Pik variants, leading to an extended effector response in planta. The crystal structure of Pikh-HMA in complex with an AVR-Pik variant confirmed that Pikh and Pikm use a similar molecular mechanism to extend their pathogen recognition profile. This study shows how different NLR receptor alleles functionally converge to extend recognition specificity to pathogen effectors.


Subject(s)
Ascomycota/metabolism , Host-Pathogen Interactions/physiology , Plant Diseases/microbiology , Receptors, Immunologic/metabolism , Alleles , Host-Pathogen Interactions/immunology , Magnaporthe/metabolism , NLR Proteins/metabolism , Oryza , Plant Proteins/metabolism , Polymorphism, Genetic/genetics
3.
Plant Physiol ; 188(2): 997-1013, 2022 02 04.
Article in English | MEDLINE | ID: mdl-34718778

ABSTRACT

Plants have evolutionarily conserved NifU (NFU)-domain proteins that are targeted to plastids or mitochondria. "Plastid-type" NFU1, NFU2, and NFU3 in Arabidopsis (Arabidopsis thaliana) play a role in iron-sulfur (Fe-S) cluster assembly in this organelle, whereas the type-II NFU4 and NFU5 proteins have not been subjected to mutant studies in any plant species to determine their biological role. Here, we confirmed that NFU4 and NFU5 are targeted to the mitochondria. The proteins were constitutively produced in all parts of the plant, suggesting a housekeeping function. Double nfu4 nfu5 knockout mutants were embryonic lethal, and depletion of NFU4 and NFU5 proteins led to growth arrest of young seedlings. Biochemical analyses revealed that NFU4 and NFU5 are required for lipoylation of the H proteins of the glycine decarboxylase complex and the E2 subunits of other mitochondrial dehydrogenases, with little impact on Fe-S cluster-containing respiratory complexes or aconitase. Consequently, the Gly-to-Ser ratio was increased in mutant seedlings and early growth improved with elevated CO2 treatment. In addition, pyruvate, 2-oxoglutarate, and branched-chain amino acids accumulated in nfu4 nfu5 mutants, further supporting defects in the other three mitochondrial lipoate-dependent enzyme complexes. NFU4 and NFU5 interacted with mitochondrial lipoyl synthase (LIP1) in yeast 2-hybrid and bimolecular fluorescence complementation assays. These data indicate that NFU4 and NFU5 have a more specific function than previously thought, most likely providing Fe-S clusters to lipoyl synthase.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Lipoylation/genetics , Mitochondria/genetics , Mitochondria/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genotype , Mutation
4.
J Integr Plant Biol ; 65(3): 810-824, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36178632

ABSTRACT

Arms race co-evolution of plant-pathogen interactions evolved sophisticated recognition mechanisms between host immune receptors and pathogen effectors. Different allelic haplotypes of an immune receptor in the host mount distinct recognition against sequence or non-sequence related effectors in pathogens. We report the molecular characterization of the Piks allele of the rice immune receptor Pik against rice blast pathogen, which requires two head-to-head arrayed nucleotide-binding sites and leucine-rich repeat proteins. Like other Pik alleles, both Piks-1 and Piks-2 are necessary and sufficient for mediating resistance. However, unlike other Pik alleles, Piks does not recognize any known AvrPik variants of Magnaporthe oryzae. Sequence analysis of the genome of an avirulent isolate V86010 further revealed that its cognate avirulence (Avr) gene most likely has no significant sequence similarity to known AvrPik variants. Piks-1 and Pikm-1 have only two amino acid differences within the integrated heavy metal-associated (HMA) domain. Pikm-HMA interacts with AvrPik-A, -D, and -E in vitro and in vivo, whereas Piks-HMA does not bind any AvrPik variants. Characterization of two amino acid residues differing Piks-1 from Pikm-1 reveal that Piks-E229Q derived from the exchange of Glu229 to Gln229 in Piks-1 gains recognition specificity against AvrPik-D but not AvrPik-A or -E, indicating that Piks-E229Q partially restores the Pikm spectrum. By contrast, Piks-A261V derived from the exchange of Ala261 to Val261 in Piks-1 retains Piks recognition specificity. We conclude that Glu229 in Piks-1 is critical for Piks breaking the canonical Pik/AvrPik recognition pattern. Intriguingly, binding activity and ectopic cell death induction is maintained between Piks-A261V and AvrPik-D, implying that positive outcomes from ectopic assays might be insufficient to deduce its immune activity against the relevant effectors in rice and rice blast interaction.


Subject(s)
Ascomycota , Magnaporthe , Oryza , Alleles , Magnaporthe/physiology , Receptors, Immunologic/metabolism , Oryza/genetics , Plant Diseases/microbiology , Plant Proteins/metabolism , Host-Pathogen Interactions
5.
J Biol Chem ; 296: 100371, 2021.
Article in English | MEDLINE | ID: mdl-33548226

ABSTRACT

Microbial plant pathogens secrete effector proteins, which manipulate the host to promote infection. Effectors can be recognized by plant intracellular nucleotide-binding leucine-rich repeat (NLR) receptors, initiating an immune response. The AVR-Pik effector from the rice blast fungus Magnaporthe oryzae is recognized by a pair of rice NLR receptors, Pik-1 and Pik-2. Pik-1 contains a noncanonical integrated heavy-metal-associated (HMA) domain, which directly binds AVR-Pik to activate plant defenses. The host targets of AVR-Pik are also HMA-domain-containing proteins, namely heavy-metal-associated isoprenylated plant proteins (HIPPs) and heavy-metal-associated plant proteins (HPPs). Here, we demonstrate that one of these targets interacts with a wider set of AVR-Pik variants compared with the Pik-1 HMA domains. We define the biochemical and structural basis of the interaction between AVR-Pik and OsHIPP19 and compare the interaction to that formed with the HMA domain of Pik-1. Using analytical gel filtration and surface plasmon resonance, we show that multiple AVR-Pik variants, including the stealthy variants AVR-PikC and AVR-PikF, which do not interact with any characterized Pik-1 alleles, bind to OsHIPP19 with nanomolar affinity. The crystal structure of OsHIPP19 in complex with AVR-PikF reveals differences at the interface that underpin high-affinity binding of OsHIPP19-HMA to a wider set of AVR-Pik variants than achieved by the integrated HMA domain of Pik-1. Our results provide a foundation for engineering the HMA domain of Pik-1 to extend binding to currently unrecognized AVR-Pik variants and expand disease resistance in rice to divergent pathogen strains.


Subject(s)
Ascomycota/genetics , Disease Resistance/immunology , Alleles , Ascomycota/metabolism , Ascomycota/pathogenicity , Disease Resistance/genetics , Host-Pathogen Interactions/immunology , Magnaporthe/immunology , Models, Molecular , NLR Proteins/metabolism , Oryza/genetics , Oryza/metabolism , Plant Diseases/microbiology , Plant Proteins/metabolism
6.
Plant Physiol ; 186(3): 1507-1525, 2021 07 06.
Article in English | MEDLINE | ID: mdl-33856472

ABSTRACT

Iron-sulfur (Fe-S) clusters are ubiquitous cofactors in all life and are used in a wide array of diverse biological processes, including electron transfer chains and several metabolic pathways. Biosynthesis machineries for Fe-S clusters exist in plastids, the cytosol, and mitochondria. A single monothiol glutaredoxin (GRX) is involved in Fe-S cluster assembly in mitochondria of yeast and mammals. In plants, the role of the mitochondrial homolog GRXS15 has only partially been characterized. Arabidopsis (Arabidopsis thaliana) grxs15 null mutants are not viable, but mutants complemented with the variant GRXS15 K83A develop with a dwarf phenotype similar to the knockdown line GRXS15amiR. In an in-depth metabolic analysis of the variant and knockdown GRXS15 lines, we show that most Fe-S cluster-dependent processes are not affected, including biotin biosynthesis, molybdenum cofactor biosynthesis, the electron transport chain, and aconitase in the tricarboxylic acid (TCA) cycle. Instead, we observed an increase in most TCA cycle intermediates and amino acids, especially pyruvate, glycine, and branched-chain amino acids (BCAAs). Additionally, we found an accumulation of branched-chain α-keto acids (BCKAs), the first degradation products resulting from transamination of BCAAs. In wild-type plants, pyruvate, glycine, and BCKAs are all metabolized through decarboxylation by mitochondrial lipoyl cofactor (LC)-dependent dehydrogenase complexes. These enzyme complexes are very abundant, comprising a major sink for LC. Because biosynthesis of LC depends on continuous Fe-S cluster supply to lipoyl synthase, this could explain why LC-dependent processes are most sensitive to restricted Fe-S supply in grxs15 mutants.


Subject(s)
Arabidopsis/genetics , Arabidopsis/metabolism , Dihydrolipoamide Dehydrogenase/metabolism , Glutaredoxins/genetics , Glutaredoxins/metabolism , Iron-Sulfur Proteins/metabolism , Mitochondria/metabolism , Dihydrolipoamide Dehydrogenase/genetics , Genes, Plant , Genetic Variation , Genotype , Iron-Sulfur Proteins/genetics
7.
Proc Natl Acad Sci U S A ; 116(35): 17584-17591, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31413196

ABSTRACT

Organisms need to balance sufficient uptake of iron (Fe) with possible toxicity. In plant roots, a regulon of uptake genes is transcriptionally activated under Fe deficiency, but it is unknown how this response is inactivated when Fe becomes available. Here we describe the function of 2 partially redundant E3 ubiquitin ligases, BRUTUS-LIKE1 (BTSL1) and BTSL2, in Arabidopsis thaliana and provide evidence that they target the transcription factor FIT, a key regulator of Fe uptake, for degradation. The btsl double mutant failed to effectively down-regulate the transcription of genes controlled by FIT, and accumulated toxic levels of Fe in roots and leaves. The C-terminal domains of BTSL1 and BTSL2 exhibited E3 ligase activity, and interacted with FIT but not its dimeric partner bHLH39. The BTSL proteins were able to poly-ubiquitinate FIT in vitro and promote FIT degradation in vivo. Thus, posttranslational control of FIT is critical to prevent excess Fe uptake.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant , Iron/metabolism , Ubiquitin-Protein Ligases/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Homeostasis , Models, Biological , Plants, Genetically Modified , Promoter Regions, Genetic , Protein Binding , Protein Interaction Domains and Motifs , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/chemistry
8.
J Biol Chem ; 294(35): 13006-13016, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31296569

ABSTRACT

Unconventional integrated domains in plant intracellular immune receptors of the nucleotide-binding leucine-rich repeat (NLRs) type can directly bind translocated effector proteins from pathogens and thereby initiate an immune response. The rice (Oryza sativa) immune receptor pairs Pik-1/Pik-2 and RGA5/RGA4 both use integrated heavy metal-associated (HMA) domains to bind the effectors AVR-Pik and AVR-Pia, respectively, from the rice blast fungal pathogen Magnaporthe oryzae These effectors both belong to the MAX effector family and share a core structural fold, despite being divergent in sequence. How integrated domains in NLRs maintain specificity of effector recognition, even of structurally similar effectors, has implications for understanding plant immune receptor evolution and function. Here, using plant cell death and pathogenicity assays and protein-protein interaction analyses, we show that the rice NLR pair Pikp-1/Pikp-2 triggers an immune response leading to partial disease resistance toward the "mis-matched" effector AVR-Pia in planta and that the Pikp-HMA domain binds AVR-Pia in vitro We observed that the HMA domain from another Pik-1 allele, Pikm, cannot bind AVR-Pia, and it does not trigger a plant response. The crystal structure of Pikp-HMA bound to AVR-Pia at 1.9 Å resolution revealed a binding interface different from those formed with AVR-Pik effectors, suggesting plasticity in integrated domain-effector interactions. The results of our work indicate that a single NLR immune receptor can bait multiple pathogen effectors via an integrated domain, insights that may enable engineering plant immune receptors with extended disease resistance profiles.


Subject(s)
Magnaporthe/immunology , NLR Proteins/immunology , Oryza/immunology , Plant Diseases/immunology , Models, Molecular , NLR Proteins/chemistry , Oryza/microbiology , Plant Diseases/microbiology , Protein Binding
9.
New Phytol ; 228(2): 651-666, 2020 10.
Article in English | MEDLINE | ID: mdl-32521047

ABSTRACT

The symbiotic relationship between legumes and rhizobium bacteria in root nodules has a high demand for iron, and questions remain regarding which transporters are involved. Here, we characterize two nodule-specific Vacuolar iron Transporter-Like (VTL) proteins in Medicago truncatula. Localization of fluorescent fusion proteins and mutant studies were carried out to correlate with existing RNA-seq data showing differential expression of VTL4 and VTL8 during early and late infection, respectively. The vtl4 insertion lines showed decreased nitrogen fixation capacity associated with more immature nodules and less elongated bacteroids. A mutant line lacking the tandemly-arranged VTL4-VTL8 genes, named 13U, was unable to develop functional nodules and failed to fix nitrogen, which was almost fully restored by expression of VTL8 alone. Using a newly developed lux reporter to monitor iron status of the bacteroids, a moderate decrease in luminescence signal was observed in vtl4 mutant nodules and a strong decrease in 13U nodules. Iron transport capability of VTL4 and VTL8 was shown by yeast complementation. These data indicate that VTL8, the closest homologue of SEN1 in Lotus japonicus, is the main route for delivering iron to symbiotic rhizobia. We propose that a failure in iron protein maturation leads to early senescence of the bacteroids.


Subject(s)
Medicago truncatula , Iron , Medicago truncatula/genetics , Medicago truncatula/metabolism , Nitrogen Fixation , Phenotype , Plant Proteins/genetics , Plant Proteins/metabolism , Root Nodules, Plant/metabolism , Symbiosis
10.
Mol Plant Microbe Interact ; 32(6): 740-749, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30601714

ABSTRACT

Higher yield potential and greater yield stability are common targets for crop breeding programs, including those in rice. Despite these efforts, biotic and abiotic stresses continue to impact rice production. Rice blast disease, caused by Magnaporthe oryzae, is the most devastating disease affecting rice worldwide. In the field, resistant varieties are unstable and can become susceptible to disease within a few years of release due to the adaptive potential of the blast fungus, specifically in the effector (avirulence [AVR]) gene pool. Here, we analyzed genetic variation of the effector gene AVR-Pik in 58 rice blast isolates from Thailand and examined the interaction between AVR-Pik and the cognate rice resistance gene Pik. Our results reveal that Thai rice blast isolates are very diverse. We observe four AVR-Pik variants in the population, including three previously identified variants, AVR-PikA, AVR-PikD, and AVR-PikE, and one novel variant, which we named AVR-PikF. Interestingly, 28 of the isolates contained two copies of AVR-Pik, always in the combination of AVR-PikD and AVR-PikF. Blast isolates expressing only AVR-PikF show high virulence to rice cultivars encoding allelic Pik resistance genes, and the AVR-PikF protein does not interact with the integrated heavy metal-associated domain of the Pik resistance protein in vitro, suggesting a mechanism for immune evasion.


Subject(s)
Alleles , Gene Duplication , Magnaporthe , Mutation , Oryza , Animals , Genetic Variation , Magnaporthe/genetics , Magnaporthe/pathogenicity , Oryza/microbiology , Plant Diseases/microbiology , Virulence/genetics
11.
Mol Plant Microbe Interact ; 31(1): 34-45, 2018 01.
Article in English | MEDLINE | ID: mdl-29144205

ABSTRACT

A diversity of plant-associated organisms secrete effectors-proteins and metabolites that modulate plant physiology to favor host infection and colonization. However, effectors can also activate plant immune receptors, notably nucleotide-binding domain and leucine-rich repeat region (NLR)-containing proteins, enabling plants to fight off invading organisms. This interplay between effectors, their host targets, and the matching immune receptors is shaped by intricate molecular mechanisms and exceptionally dynamic coevolution. In this article, we focus on three effectors, AVR-Pik, AVR-Pia, and AVR-Pii, from the rice blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae), and their corresponding rice NLR immune receptors, Pik, Pia, and Pii, to highlight general concepts of plant-microbe interactions. We draw 12 lessons in effector and NLR biology that have emerged from studying these three little effectors and are broadly applicable to other plant-microbe systems.


Subject(s)
Host-Pathogen Interactions , NLR Proteins/metabolism , Plants/metabolism , Plants/microbiology , Amino Acid Sequence , Biological Evolution , Genetic Variation , NLR Proteins/chemistry , NLR Proteins/genetics , Plants/immunology , Selection, Genetic
12.
Mol Plant Microbe Interact ; 27(7): 624-37, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24678835

ABSTRACT

Both plants and animals rely on nucleotide-binding domain and leucine-rich repeat-containing (NB-LRR or NLR) proteins to respond to invading pathogens and activate immune responses. How plant NB-LRR proteins respond to pathogens is poorly understood. We undertook a gain-of-function random mutagenesis screen of the potato NB-LRR immune receptor R3a to study how this protein responds to the effector protein AVR3a from the oomycete pathogen Phytophthora infestans. R3a response can be extended to the stealthy AVR3aEM isoform of the effector while retaining recognition of AVR3aKI. Each one of eight single amino acid mutations is sufficient to expand the R3a response to AVR3aEM and other AVR3a variants. These mutations occur across the R3a protein, from the N terminus to different regions of the LRR domain. Further characterization of these R3a mutants revealed that at least one of them was sensitized, exhibiting a stronger response than the wild-type R3a protein to AVR3aKI. Remarkably, the N336Y mutation, near the R3a nucleotide-binding pocket, conferred response to the effector protein PcAVR3a4 from the vegetable pathogen P. capsici. This work contributes to understanding how NB-LRR receptor specificity can be modulated. Together with knowledge of pathogen effector diversity, this strategy can be exploited to develop synthetic immune receptors.


Subject(s)
Phytophthora/physiology , Plant Proteins/metabolism , Solanum tuberosum/metabolism , Amino Acid Sequence , Amino Acid Substitution , Gene Expression Regulation, Plant/immunology , Models, Molecular , Plant Proteins/chemistry , Plant Proteins/genetics , Solanum tuberosum/immunology , Solanum tuberosum/microbiology
13.
Electrophoresis ; 35(11): 1685-92, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24590893

ABSTRACT

Grapevine is a large source of healthy polyphenols for human diet, and red table-grapes and wines are the main source of stilbenes. These compounds are important both in the plant defence system and for human health. In the present study, Vitis vinifera cv. Barbera cell cultures were treated with 50 µg/mL chitosan and proteomic analyses on soluble and membrane subcellular fractions were performed against suitable controls. Three soluble stilbene synthase protein spots, four stilbene synthase spots in the microsomal fraction and four spots of membrane ATPase subunits were identified, the accumulation of which was modulated in response to chitosan treatment. Present proteomic and immunolocalisation data seem to provide evidence supporting the hypothesis that a stilbene biosynthetic multi-enzyme complex is associated with the intracellular membrane. In addition, proteomic analyses showed a general decrease in the accumulation of proteins belonging to different primary metabolism pathways, both in the soluble and membrane fractions. In particular, energy, sugar and amino acid metabolisms were down-regulated as a consequence of chitosan and acetic acid treatments. These metabolic modifications could lead to a consistent change in the profile and amount of metabolites stored in grape berries, with consequent effects on taste, flavour, organoleptic and nutraceutical properties of derived food products.


Subject(s)
Chitosan/metabolism , Plant Proteins/analysis , Plant Proteins/metabolism , Proteomics , Vitis/cytology , Vitis/metabolism , Acyltransferases/analysis , Acyltransferases/metabolism , Cell Culture Techniques/methods , Stilbenes/metabolism , Subcellular Fractions/chemistry , Subcellular Fractions/metabolism
14.
PLoS Pathog ; 7(12): e1002441, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22194688

ABSTRACT

RNA-binding proteins play a central role in post-transcriptional mechanisms that control gene expression. Identification of novel RNA-binding proteins in fungi is essential to unravel post-transcriptional networks and cellular processes that confer identity to the fungal kingdom. Here, we carried out the functional characterisation of the filamentous fungus-specific RNA-binding protein RBP35 required for full virulence and development in the rice blast fungus. RBP35 contains an N-terminal RNA recognition motif (RRM) and six Arg-Gly-Gly tripeptide repeats. Immunoblots identified two RBP35 protein isoforms that show a steady-state nuclear localisation and bind RNA in vitro. RBP35 coimmunoprecipitates in vivo with Cleavage Factor I (CFI) 25 kDa, a highly conserved protein involved in polyA site recognition and cleavage of pre-mRNAs. Several targets of RBP35 have been identified using transcriptomics including 14-3-3 pre-mRNA, an important integrator of environmental signals. In Magnaporthe oryzae, RBP35 is not essential for viability but regulates the length of 3'UTRs of transcripts with developmental and virulence-associated functions. The Δrbp35 mutant is affected in the TOR (target of rapamycin) signaling pathway showing significant changes in nitrogen metabolism and protein secretion. The lack of clear RBP35 orthologues in yeast, plants and animals indicates that RBP35 is a novel auxiliary protein of the polyadenylation machinery of filamentous fungi. Our data demonstrate that RBP35 is the fungal equivalent of metazoan CFI 68 kDa and suggest the existence of 3'end processing mechanisms exclusive to the fungal kingdom.


Subject(s)
Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Magnaporthe/genetics , Polyadenylation , mRNA Cleavage and Polyadenylation Factors/genetics , 3' Untranslated Regions/genetics , Amino Acid Sequence , Fungal Proteins/metabolism , Magnaporthe/growth & development , Magnaporthe/pathogenicity , Molecular Sequence Data , Oryza/microbiology , Plant Diseases/microbiology , RNA Precursors/metabolism , RNA, Messenger/metabolism , Virulence/genetics , mRNA Cleavage and Polyadenylation Factors/metabolism
15.
Plant Cell ; 22(3): 953-72, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20348434

ABSTRACT

Magnaporthe oryzae is the most important fungal pathogen of rice (Oryza sativa). Under laboratory conditions, it is able to colonize both aerial and underground plant organs using different mechanisms. Here, we characterize an infection-related development in M. oryzae produced on hydrophilic polystyrene (PHIL-PS) and on roots. We show that fungal spores develop preinvasive hyphae (pre-IH) from hyphopodia (root penetration structures) or germ tubes and that pre-IH also enter root cells. Changes in fungal cell wall structure accompanying pre-IH are seen on both artificial and root surfaces. Using characterized mutants, we show that the PMK1 (for pathogenicity mitogen-activated protein kinase 1) pathway is required for pre-IH development. Twenty mutants with altered pre-IH differentiation on PHIL-PS identified from an insertional library of 2885 M. oryzae T-DNA transformants were found to be defective in pathogenicity. The phenotypic analysis of these mutants revealed that appressorium, hyphopodium, and pre-IH formation are genetically linked fungal developmental processes. We further characterized one of these mutants, M1373, which lacked the M. oryzae ortholog of exportin-5/Msn5p (EXP5). Mutants lacking EXP5 were much less virulent on roots, suggesting an important involvement of proteins and/or RNAs transported by EXP5 during M. oryzae root infection.


Subject(s)
Magnaporthe/growth & development , Magnaporthe/genetics , Oryza/microbiology , Plant Diseases/microbiology , Cell Wall/ultrastructure , DNA, Fungal/genetics , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Genetic Complementation Test , Karyopherins/genetics , Karyopherins/metabolism , Magnaporthe/pathogenicity , Mitogen-Activated Protein Kinases/genetics , Mutagenesis, Insertional , Mutation , Plant Roots/microbiology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/growth & development , Spores, Fungal/growth & development , Spores, Fungal/pathogenicity
16.
Elife ; 122023 05 18.
Article in English | MEDLINE | ID: mdl-37199729

ABSTRACT

A subset of plant intracellular NLR immune receptors detect effector proteins, secreted by phytopathogens to promote infection, through unconventional integrated domains which resemble the effector's host targets. Direct binding of effectors to these integrated domains activates plant defenses. The rice NLR receptor Pik-1 binds the Magnaporthe oryzae effector AVR-Pik through an integrated heavy metal-associated (HMA) domain. However, the stealthy alleles AVR-PikC and AVR-PikF avoid interaction with Pik-HMA and evade host defenses. Here, we exploited knowledge of the biochemical interactions between AVR-Pik and its host target, OsHIPP19, to engineer novel Pik-1 variants that respond to AVR-PikC/F. First, we exchanged the HMA domain of Pikp-1 for OsHIPP19-HMA, demonstrating that effector targets can be incorporated into NLR receptors to provide novel recognition profiles. Second, we used the structure of OsHIPP19-HMA to guide the mutagenesis of Pikp-HMA to expand its recognition profile. We demonstrate that the extended recognition profiles of engineered Pikp-1 variants correlate with effector binding in planta and in vitro, and with the gain of new contacts across the effector/HMA interface. Crucially, transgenic rice producing the engineered Pikp-1 variants was resistant to blast fungus isolates carrying AVR-PikC or AVR-PikF. These results demonstrate that effector target-guided engineering of NLR receptors can provide new-to-nature disease resistance in crops.


Subject(s)
Magnaporthe , Oryza , Disease Resistance/genetics , Receptors, Immunologic/metabolism , Plants/metabolism , Plant Diseases/microbiology , Magnaporthe/metabolism , Plant Proteins/chemistry , Host-Pathogen Interactions
17.
J Biol Chem ; 285(8): 5308-16, 2010 Feb 19.
Article in English | MEDLINE | ID: mdl-20023302

ABSTRACT

Linoleate diol synthases (LDS) are heme enzymes, which oxygenate 18:2n-6 sequentially to (8R)-hydroperoxylinoleic acid ((8R)-HPODE) and to (5S,8R)-dihydroxy-, (7S,8S)-dihydroxy-, or (8R,11S)-dihydroxylinoleic acids (DiHODE). The genome of the rice blast fungus, Magnaporthe oryzae, contains two genes with homology to LDS. M. oryzae oxidized 18:2n-6 to (8R)-HPODE and to (7S,8S)-DiHODE, (6S,8R)-DiHODE, and (8R,11S)-HODE. Small amounts of 10-hydroxy-(8E,12Z)-octadecadienoic acid and traces of 5,8-DiHODE were also detected by liquid chromatography-mass spectrometry. The contribution of the 7,8-LDS gene to M. oryzae pathogenicity was evaluated by replacement of the catalytic domain with hygromycin and green fluorescent protein variant (SGFP) cassettes. This genetically modified strain Delta7,8-LDS infected rice leaves and roots and formed appressoria and conidia as the native fungus. The Delta7,8-LDS mutant had lost the capacity to biosynthesize all the metabolites except small amounts of 8-hydroxylinoleic acid. Studies with stereospecifically deuterated linoleic acids showed that (8R)-HPODE was formed by abstraction of the pro-S hydrogen at C-8 and antarafacial oxygenation, whereas (7S,8S)-DiHODE and (8R,11S)-DiHODE were formed from (8R)-HPODE by suprafacial hydrogen abstraction and oxygenation at C-7 and C-11, respectively. A mac1 suppressor mutant (Delta mac1 sum1-99) of M. oryzae, which shows cAMP-independent protein kinase A activity, oxygenated 18:2n-6 to increased amounts of (10R)-HPODE and (5S,8R)-DiHODE. Expression of the 7,8-LDS gene but not of the second homologue was detected in the suppressor mutant. This suggests that PKA-mediated signaling pathway regulates the dioxygenase and hydroperoxide isomerase activities of M. oryzae.


Subject(s)
Fungal Proteins/metabolism , Genes, Fungal/physiology , Oryza/microbiology , Oxygenases/metabolism , Plant Diseases/microbiology , Sordariales/enzymology , Sordariales/pathogenicity , Fungal Proteins/genetics , Gene Deletion , Linoleic Acids/genetics , Linoleic Acids/metabolism , Oxygenases/genetics , Plant Diseases/genetics
18.
Bio Protoc ; 10(13): e3676, 2020 Jul 05.
Article in English | MEDLINE | ID: mdl-33659346

ABSTRACT

The mechanisms of virulence and immunity are often governed by molecular interactions between pathogens and host proteins. The study of these interactions has major implications on understanding virulence activities, and how the host immune system recognizes the presence of pathogens to initiate an immune response. Frequently, the association between pathogen molecules and host proteins are assessed using qualitative techniques. As small differences in binding affinity can have a major biological effect, in vitro techniques that can quantitatively compare the binding between different proteins are required. However, these techniques can be manually intensive and often require large amounts of purified proteins. Here we present a simplified Surface Plasmon Resonance (SPR) protocol that allows a reproducible side-by-side quantitative comparison of the binding between different proteins, even in cases where the binding affinity cannot be confidently calculated. We used this method to assess the binding of virulence proteins (termed effectors) from the blast fungus Magnaporthe oryzae, to a domain of a host immune receptor. This approach represents a rapid and quantitative way to study how pathogen molecules bind to host proteins, requires only limited quantities of proteins, and is highly reproducible. Although this method requires the use of an SPR instrument, these can often be accessed through shared scientific services at many institutions. Thus, this technique can be implemented in any study that aims to understand host-pathogen interactions, irrespective of the expertise of the investigator.

19.
Proteomics ; 9(3): 610-24, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19132683

ABSTRACT

Polyphenols, including stilbenes and flavonoids, are an essential part of human diet and constitute one of the most abundant and ubiquitous groups of plant secondary metabolites, and their level is inducible by stress, fungal attack or biotic and abiotic elicitors. Proteomic analysis of Vitis vinifera (L.) cultivar (cv.) Barbera grape cell suspensions, showed that the amount of 73 proteins consistently changed in 50 microg/mL chitosan-treated samples compared with controls, or between the two controls, of which 56 were identified by MS analyses. In particular, de-novo synthesis and/or accumulation of stilbene synthase proteins were promoted by chitosan which also stimulated trans-resveratrol endogenous accumulation and decreased its release into the culture medium. No influence was shown on cis-resveratrol. There was no effect on the accumulation of total resveratrol mono-glucosides (trans- and cis-piceid and trans- and cis-resveratroloside). Throughout the observation period the upregulation of phenylalanine ammonia lyase, chalcone synthase, chalcone-flavanone isomerase (CHI) transcript expression levels well correlated with CHI protein amount and with the accumulation of anthocyanins. Chitosan treatment strongly increased the expression of eleven proteins of the pathogenesis related protein-10 family, as well as their mRNA levels.


Subject(s)
Chitosan/pharmacology , Gene Expression Regulation, Plant/drug effects , Vitis/drug effects , Vitis/metabolism , Acyltransferases/metabolism , Anthocyanins/metabolism , Blotting, Northern , Cells, Cultured , Electrophoresis, Gel, Two-Dimensional , Flavonoids/metabolism , Phenols/metabolism , Polyphenols , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Stilbenes/metabolism
20.
Elife ; 82019 09 19.
Article in English | MEDLINE | ID: mdl-31535976

ABSTRACT

Plant nucleotide binding, leucine-rich repeat (NLR) receptors detect pathogen effectors and initiate an immune response. Since their discovery, NLRs have been the focus of protein engineering to improve disease resistance. However, this approach has proven challenging, in part due to their narrow response specificity. Previously, we revealed the structural basis of pathogen recognition by the integrated heavy metal associated (HMA) domain of the rice NLR Pikp (Maqbool et al., 2015). Here, we used structure-guided engineering to expand the response profile of Pikp to variants of the rice blast pathogen effector AVR-Pik. A mutation located within an effector-binding interface of the integrated Pikp-HMA domain increased the binding affinity for AVR-Pik variants in vitro and in vivo. This translates to an expanded cell-death response to AVR-Pik variants previously unrecognized by Pikp in planta. The structures of the engineered Pikp-HMA in complex with AVR-Pik variants revealed the mechanism of expanded recognition. These results provide a proof-of-concept that protein engineering can improve the utility of plant NLR receptors where direct interaction between effectors and NLRs is established, particularly where this interaction occurs via integrated domains.


Subject(s)
NLR Proteins/metabolism , Plant Proteins/metabolism , Receptors, Immunologic/metabolism , Antigens, Bacterial/metabolism , NLR Proteins/genetics , Oryza/enzymology , Plant Proteins/genetics , Protein Binding , Protein Engineering , Receptors, Immunologic/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL