Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
J Biol Chem ; 298(9): 102353, 2022 09.
Article in English | MEDLINE | ID: mdl-35944584

ABSTRACT

Despite recent advances in the development of BRAF kinase inhibitors (BRAFi) for BRAF-mutant melanomas, development of resistance remains a major clinical problem. In addition to genetic alterations associated with intrinsic resistance, several adaptive response mechanisms are known to be rapidly activated to allow cell survival in response to treatment, limiting efficacy. A better understanding of the mechanisms driving resistance is urgently needed to improve the success of BRAF-targeted therapies and to make therapeutic intervention more durable. In this study, we identify the mitogen-activated protein kinase (MAPK) p38 as a novel mediator of the adaptive response of melanoma cells to BRAF-targeted therapy. Our findings demonstrate that BRAFi leads to an early increase in p38 activation, which promotes phosphorylation of the transcription factor SOX2 at Ser251, enhancing SOX2 stability, nuclear localization, and transcriptional activity. Furthermore, functional studies show that SOX2 depletion increases sensitivity of melanoma cells to BRAFi, whereas overexpression of a phosphomimetic SOX2-S251E mutant is sufficient to drive resistance and desensitize melanoma cells to BRAFi in vitro and in a zebrafish xenograft model. We also found that SOX2 phosphorylation at Ser251 confers resistance to BRAFi by binding to the promoter and increasing transcriptional activation of the ATP-binding cassette drug efflux transporter ABCG2. In summary, we unveil a p38/SOX2-mediated mechanism of adaptive response to BRAFi, which provides prosurvival signals to melanoma cells against the cytotoxic effects of BRAFi prior to acquiring resistance.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Adenosine Triphosphate/metabolism , Animals , Cell Line, Tumor , Drug Resistance, Neoplasm , Humans , MAP Kinase Signaling System , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf/metabolism , SOXB1 Transcription Factors/genetics , SOXB1 Transcription Factors/metabolism , Zebrafish/metabolism , p38 Mitogen-Activated Protein Kinases/genetics , p38 Mitogen-Activated Protein Kinases/metabolism
2.
Neurobiol Dis ; 174: 105858, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36096339

ABSTRACT

Mutations in SPG11, encoding spatacsin, constitute the major cause of autosomal recessive Hereditary Spastic Paraplegia (HSP) with thinning of the corpus callosum. Previous studies showed that spatacsin orchestrates cellular traffic events through the formation of a coat-like complex and its loss of function results in lysosomal and axonal transport impairments. However, the upstream mechanisms that regulate spatacsin trafficking are unknown. Here, using proteomics and CRISPR/Cas9-mediated tagging of endogenous spatacsin, we identified a subset of 14-3-3 proteins as physiological interactors of spatacsin. The interaction is modulated by Protein Kinase A (PKA)-dependent phosphorylation of spatacsin at Ser1955, which initiates spatacsin trafficking from the plasma membrane to the intracellular space. Our study provides novel insight in understanding spatacsin physio-pathological roles with mechanistic dissection of its associated pathways.


Subject(s)
14-3-3 Proteins , Spastic Paraplegia, Hereditary , Humans , 14-3-3 Proteins/genetics , Cyclic AMP-Dependent Protein Kinases/genetics , Spastic Paraplegia, Hereditary/genetics , Mutation , Corpus Callosum/pathology , Proteins/genetics
3.
Int J Mol Sci ; 22(12)2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34203724

ABSTRACT

Numerous studies have shown that hedgehog inhibitors (iHHs) only partially block the growth of tumor cells, especially in vivo. Leukemia often expands in a nutrient-depleted environment (bone marrow and thymus). In order to identify putative signaling pathways implicated in the adaptive response to metabolically adverse conditions, we executed quantitative phospho-proteomics in T-cell acute lymphoblastic leukemia (T-ALL) cells subjected to nutrient-depleted conditions (serum starvation). We found important modulations of peptides phosphorylated by critical signaling pathways including casein kinase, mammalian target of rapamycin, and 5'AMP-activated kinase (AMPK). Surprisingly, in T-ALL cells, AMPK signaling was the most consistently downregulated pathway under serum-depleted conditions, and this coincided with increased GLI1 expression and sensitivity to iHHs, especially the GLI1/2 inhibitor GANT-61. Increased sensitivity to GANT-61 was also found following genetic inactivation of the catalytic subunit of AMPK (AMPKα1) or pharmacological inhibition of AMPK by Compound C. Additionally, patient-derived xenografts showing high GLI1 expression lacked activated AMPK, suggesting an important role for this signaling pathway in regulating GLI1 protein levels. Further, joint targeting of HH and AMPK signaling pathways in T-ALL cells by GANT-61 and Compound C significantly increased the therapeutic response. Our results suggest that metabolic adaptation that occurs under nutrient starvation in T-ALL cells increases responsiveness to HH pathway inhibitors through an AMPK-dependent mechanism and that joint therapeutic targeting of AMPK signaling and HH signaling could represent a valid therapeutic strategy in rapidly expanding tumors where nutrient availability becomes limiting.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Hedgehog Proteins/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Signal Transduction , AMP-Activated Protein Kinases/genetics , Cell Death/drug effects , Culture Media, Serum-Free/pharmacology , Enzyme Activation/drug effects , Humans , Jurkat Cells , Mechanistic Target of Rapamycin Complex 1/metabolism , Pyridines/pharmacology , Pyrimidines/pharmacology , Signal Transduction/drug effects , Zinc Finger Protein GLI1/metabolism
4.
Clin Chem Lab Med ; 58(6): 968-979, 2020 Jun 25.
Article in English | MEDLINE | ID: mdl-32229654

ABSTRACT

Background The sensitivities and specificities of C-reactive protein (CRP) and faecal calprotectin (fCal), as recommended for inflammatory bowel diseases (IBD) diagnosis and monitoring, are low. Our aim was to discover new stool protein/peptide biomarkers for diagnosing IBD. Methods For peptides, MALDI-TOF/MS (m/z 1000-4000) was performed using stools from an exploratory (34 controls; 72 Crohn's disease [CD], 56 ulcerative colitis [UC]) and a validation (28 controls, 27 CD, 15 UC) cohort. For proteins, LTQ-Orbitrap XL MS analysis (6 controls, 5 CD, 5 UC) was performed. Results MALDI-TOF/MS spectra of IBD patients had numerous features, unlike controls. Overall, 426 features (67 control-associated, 359 IBD-associated) were identified. Spectra were classified as control or IBD (absence or presence of IBD-associated features). In the exploratory cohort, the sensitivity and specificity of this classification algorithm were 81% and 97%, respectively. Blind analysis of the validation cohort confirmed 97% specificity, with a lower sensitivity (55%) paralleling active disease frequency. Following binary logistic regression analysis, IBD was independently correlated with MALDI-TOF/MS spectra (p < 0.0001), outperforming fCal measurements (p = 0.029). The IBD-correlated m/z 1810.8 feature was a fragment of APC2, homologous with APC, over-expressed by infiltrating cells lining the surface in UC or the muscularis-mucosae in CD (assessed by immunohistochemistry). IBD-associated over-expressed proteins included immunoglobulins and neutrophil proteins, while those under-expressed comprised proteins of the nucleic acid assembly or those (OLFM4, ENPP7) related to cancer risk. Conclusions Our study provides evidence for the clinical utility of a novel proteomic method for diagnosing IBD and insight on the pathogenic role of APC. Moreover, the newly described IBD-associated proteins might become tools for cancer risk assessment in IBD patients.


Subject(s)
Feces/chemistry , Inflammatory Bowel Diseases/diagnosis , Inflammatory Bowel Diseases/etiology , Peptides/metabolism , Proteomics , Adult , Biomarkers/metabolism , Cohort Studies , Female , Humans , Inflammatory Bowel Diseases/metabolism , Male , Middle Aged , Reproducibility of Results
5.
Anal Bioanal Chem ; 412(30): 8299-8312, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33037906

ABSTRACT

Resurrection plant Ramonda serbica is a suitable model to investigate vegetative desiccation tolerance. However, the detailed study of these mechanisms at the protein level is hampered by the severe tissue water loss, high amount of phenolics and polysaccharide, and possible protein modifications and aggregations during the extraction and purification steps. When applied to R. serbica leaves, widely used protein extraction protocols containing polyvinylpolypyrrolidone and ascorbate, as well as the phenol/SDS/buffer-based protocol recommended for recalcitrant plant tissues failed to eliminate persistent contamination and ensure high protein quality. Here we compared three protein extraction approaches aiming to establish the optimal one for both hydrated and desiccated R. serbica leaves. To evaluate the efficacy of these protocols by shotgun proteomics, we also created the first R. serbica annotated transcriptome database, available at http://www.biomed.unipd.it/filearrigoni/Trinity_Sample_RT2.fasta . The detergent-free phenol-based extraction combined with dodecyl-ß-D-maltoside-assisted extraction enabled high-yield and high-purity protein extracts. The phenol-based protocol improved the protein-band resolution, band number, and intensity upon electrophoresis, and increased the protein yield and the number of identified peptides and protein groups by LC-MS/MS. Additionally, dodecyl-ß-D-maltoside enabled solubilisation and identification of more membrane-associated proteins. The presented study paves the way for investigating the desiccation tolerance in R. serbica, and we recommend this protocol for similar recalcitrant plant material.


Subject(s)
Magnoliopsida/chemistry , Plant Leaves/chemistry , Plant Proteins/isolation & purification , Proteomics/methods , Water/chemistry , Chromatography, Liquid/methods , Desiccation , Electrophoresis, Polyacrylamide Gel , Tandem Mass Spectrometry/methods
6.
Angew Chem Int Ed Engl ; 59(16): 6607-6611, 2020 04 16.
Article in English | MEDLINE | ID: mdl-32022419

ABSTRACT

In the brain of individuals with Alzheimer's disease, the regulatory protein ubiquitin is found conjugated to different lysine residues of tau protein assembled into pathological paired helical filaments. To shed light on the hitherto unexplored ubiquitination-linked conformational transitions of tau, the availability of in vitro ubiquitin conjugation methods is of primary importance. In our work, we focused on the four-repeat domain of tau and assembled an enzymatic machinery formed by UBE1, Ubc13, and CHIP enzymes. The enzymatic reaction resulted in monoubiquitination at multiple sites, reminiscent of the ubiquitination pattern observed in vivo. We further exploited chemoselective disulfide coupling reactions to construct three tau regioisomers with site-specific monoubiquitination. Protein aggregation experiments revealed that the multiple enzyme-derived products were unable to convert into amyloid fibrils, while the semisynthetic conjugates exhibited diverse capability to form filaments. This study contributes novel insight into the effects of a key post-translational modification on aberrant protein self-assembly.


Subject(s)
Peptides/metabolism , Protein Aggregates , Ubiquitin-Activating Enzymes/metabolism , Ubiquitin-Conjugating Enzymes/metabolism , Ubiquitin-Protein Ligases/metabolism , tau Proteins/chemistry , Amino Acid Sequence , Amyloid/metabolism , Humans , Mutagenesis, Site-Directed , Peptides/chemistry , Stereoisomerism , Ubiquitination , tau Proteins/genetics , tau Proteins/metabolism
7.
Hum Mol Genet ; 26(3): 611-623, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28031292

ABSTRACT

HSJ1 (DNAJB2), a member of the DNAJ family of molecular chaperones, is a key player in neuronal proteostasis maintenance. It binds ubiquitylated proteins through its Ubiquitin Interacting Motifs (UIMs) and facilitates their delivery to the proteasome for degradation. Mutations in the DNAJB2 gene lead to inherited neuropathies such as Charcot-Marie-Tooth type-2, distal hereditary motor neuropathies, spinal muscular atrophy with parkinsonism and the later stages can resemble amyotrophic lateral sclerosis. HSJ1 overexpression can reduce aggregation of neurodegeneration-associated proteins in vitro and in vivo; however, the regulation of HSJ1 function is little understood. Here we show that CK2, a ubiquitous and constitutively active protein kinase, phosphorylates HSJ1 within its second UIM, at the dominant site Ser250 and the hierarchical site Ser247. A phospho-HSJ1 specific antibody confirmed phosphorylation of endogenous HSJ1a and HSJ1b. A tandem approach of phospho-site mutation and treatment with CK2 specific inhibitors demonstrated that phosphorylation at these sites is accompanied by a reduced ability of HSJ1 to bind ubiquitylated clients and to exert its chaperone activity. Our results disclose a novel interplay between ubiquitin- and phosphorylation-dependent signalling, and represent the first report of a regulatory mechanism for UIM-dependent function. They also suggest that CK2 inhibitors could release the full neuroprotective potential of HSJ1, and deserve future interest as therapeutic strategies for neurodegenerative disease.


Subject(s)
Charcot-Marie-Tooth Disease/genetics , HSP40 Heat-Shock Proteins/genetics , Molecular Chaperones/genetics , Muscular Atrophy, Spinal/genetics , Neurons/metabolism , Amino Acid Sequence , Casein Kinase II/genetics , Casein Kinase II/metabolism , Charcot-Marie-Tooth Disease/physiopathology , HSP40 Heat-Shock Proteins/metabolism , Humans , Molecular Chaperones/metabolism , Muscular Atrophy, Spinal/physiopathology , Mutation , Neurons/pathology , Phosphorylation , Proteasome Endopeptidase Complex/genetics , Protein Domains/genetics , Protein Folding , Ubiquitin/genetics
8.
Cell Mol Life Sci ; 75(11): 2011-2026, 2018 06.
Article in English | MEDLINE | ID: mdl-29119230

ABSTRACT

CK2 denotes a ubiquitous and pleiotropic protein kinase whose holoenzyme is composed of two catalytic (α and/or α') and two regulatory ß subunits. The CK2 consensus sequence, S/T-x-x-D/E/pS/pT is present in numerous phosphosites, but it is not clear how many of these are really generated by CK2. To gain information about this issue, advantage has been taken of C2C12 cells entirely deprived of both CK2 catalytic subunits by the CRISPR/Cas9 methodology. A comparative SILAC phosphoproteomics analysis reveals that, although about 30% of the quantified phosphosites do conform to the CK2 consensus, only one-third of these are substantially reduced in the CK2α/α'(-/-) cells, consistent with their generation by CK2. A parallel study with C2C12 cells deprived of the regulatory ß subunit discloses a role of this subunit in determining CK2 targeting. We also find that phosphosites notoriously generated by CK2 are not fully abrogated in CK2α/α'(-/-) cells, while some phosphosites unrelated to CK2 are significantly altered. Collectively taken our data allow to conclude that the phosphoproteome generated by CK2 is not as ample and rigidly pre-determined as it was believed before. They also show that the lack of CK2 promotes phosphoproteomics perturbations attributable to kinases other than CK2.


Subject(s)
Casein Kinase II/metabolism , Phosphopeptides/metabolism , Animals , Casein Kinase II/genetics , Cell Line , Gene Deletion , Gene Knockout Techniques , Mice , Phosphopeptides/analysis , Phosphorylation , Proteomics/methods
9.
Ecotoxicol Environ Saf ; 178: 146-158, 2019 Aug 30.
Article in English | MEDLINE | ID: mdl-31002969

ABSTRACT

Animal manure or bio-solids used as fertilizers are the main routes of antibiotic exposure in the agricultural land, which can have immense detrimental effects on plants. Sulfadiazine (SDZ), belonging to the class of sulfonamides, is one of the most detected antibiotics in the agricultural soil. In this study, the effect of SDZ on the growth, changes in antioxidant metabolite content and enzyme activities related to oxidative stress were analysed. Moreover, the proteome alterations in Arabidopsis thaliana roots in response to SDZ was examined by means of a combined iTRAQ-LC-MS/MS quantitative proteomics approach. A dose-dependent decrease in leaf biomass and root length was evidenced in response to SDZ. Increased malondialdehyde content at higher concentration (2 µM) of SDZ indicated increased lipid peroxidation and suggest the induction of oxidative stress. Glutathione levels were significantly higher compared to control, whereas there was no increase in ascorbate content or the enzyme activities of glutathione metabolism, even at higher concentrations. In total, 48 differentially abundant proteins related to stress/stimuli response followed by transcription and translation, metabolism, transport and other functions were identified. Several proteins related to oxidative, dehydration, salinity and heavy metal stresses were represented. Upregulation of peroxidases was validated with total peroxidase activity. Pathway analysis provided an indication of increased phenylpropanoid biosynthesis. Probable molecular mechanisms altered in response to SDZ are highlighted.


Subject(s)
Anti-Bacterial Agents/toxicity , Arabidopsis/drug effects , Oxidative Stress/drug effects , Proteome/metabolism , Soil Pollutants/toxicity , Sulfadiazine/toxicity , Arabidopsis/growth & development , Arabidopsis/metabolism , Fertilizers/analysis , Manure/analysis , Proteomics/methods , Soil/chemistry
10.
Cell Physiol Biochem ; 50(5): 1840-1855, 2018.
Article in English | MEDLINE | ID: mdl-30423558

ABSTRACT

BACKGROUND/AIMS: The permeability transition pore (PTP) is an unselective, Ca2+-dependent high conductance channel of the inner mitochondrial membrane whose molecular identity has long remained a mystery. The most recent hypothesis is that pore formation involves the F-ATP synthase, which consistently generates Ca2+-activated channels. Available structures do not display obvious features that can accommodate a channel; thus, how the pore can form and whether its activity can be entirely assigned to F-ATP synthase is the matter of debate. In this study, we investigated the role of F-ATP synthase subunits e, g and b in PTP formation. METHODS: Yeast null mutants for e, g and the first transmembrane (TM) α-helix of subunit b were generated and evaluated for mitochondrial morphology (electron microscopy), membrane potential (Rhodamine123 fluorescence) and respiration (Clark electrode). Homoplasmic C23S mutant of subunit a was generated by in vitro mutagenesis followed by biolistic transformation. F-ATP synthase assembly was evaluated by BN-PAGE analysis. Cu2+ treatment was used to induce the formation of F-ATP synthase dimers in the absence of e and g subunits. The electrophysiological properties of F-ATP synthase were assessed in planar lipid bilayers. RESULTS: Null mutants for the subunits e and g display dimer formation upon Cu2+ treatment and show PTP-dependent mitochondrial Ca2+ release but not swelling. Cu2+ treatment causes formation of disulfide bridges between Cys23 of subunits a that stabilize dimers in absence of e and g subunits and favors the open state of wild-type F-ATP synthase channels. Absence of e and g subunits decreases conductance of the F-ATP synthase channel about tenfold. Ablation of the first TM of subunit b, which creates a distinct lateral domain with e and g, further affected channel activity. CONCLUSION: F-ATP synthase e, g and b subunits create a domain within the membrane that is critical for the generation of the high-conductance channel, thus is a prime candidate for PTP formation. Subunits e and g are only present in eukaryotes and may have evolved to confer this novel function to F-ATP synthase.


Subject(s)
Mitochondria/metabolism , Mitochondrial Proton-Translocating ATPases/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Calcium/metabolism , Cryoelectron Microscopy , Dimerization , Membrane Potential, Mitochondrial , Mitochondrial Proton-Translocating ATPases/genetics , Mutagenesis, Site-Directed , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Subunits/genetics , Protein Subunits/metabolism , Saccharomyces cerevisiae Proteins/genetics
11.
Mol Cancer ; 16(1): 85, 2017 04 28.
Article in English | MEDLINE | ID: mdl-28454577

ABSTRACT

BACKGROUND: The BRAF protein kinase is widely studied as a cancer driver and therapeutic target. However, the regulation of its expression is not completely understood. RESULTS: Taking advantage of the RNA-seq data of more than 4800 patients belonging to 9 different cancer types, we show that BRAF mRNA exists as a pool of 3 isoforms (reference BRAF, BRAF-X1, and BRAF-X2) that differ in the last part of their coding sequences, as well as in the length (BRAF-ref: 76 nt; BRAF-X1 and BRAF-X2: up to 7 kb) and in the sequence of their 3'UTRs. The expression levels of BRAF-ref and BRAF-X1/X2 are inversely correlated, while the most prevalent among the three isoforms varies from cancer type to cancer type. In melanoma cells, the X1 isoform is expressed at the highest level in both therapy-naïve cells and cells with acquired resistance to vemurafenib driven by BRAF gene amplification or expression of the Δ[3-10] splicing variant. In addition to the BRAF-ref protein, the BRAF-X1 protein (the full length as well as the Δ[3-10] variant) is also translated. The expression levels of the BRAF-ref and BRAF-X1 proteins are similar, and together they account for BRAF functional activities. In contrast, the endogenous BRAF-X2 protein is hard to detect because the C-terminal domain is selectively recognized by the ubiquitin-proteasome pathway and targeted for degradation. CONCLUSIONS: By shedding light on the repertoire of BRAF mRNA and protein variants, and on the complex regulation of their expression, our work paves the way to a deeper understanding of a crucially important player in human cancer and to a more informed development of new therapeutic strategies.


Subject(s)
Melanoma/genetics , Neoplasms/genetics , Protein Isoforms/genetics , Proto-Oncogene Proteins B-raf/genetics , Alternative Splicing/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Exons/genetics , Gene Expression Regulation, Neoplastic/drug effects , High-Throughput Nucleotide Sequencing , Humans , Indoles/administration & dosage , Melanoma/drug therapy , Melanoma/pathology , Neoplasms/drug therapy , Neoplasms/pathology , RNA, Messenger/genetics , Sulfonamides/administration & dosage , Vemurafenib
12.
Biochim Biophys Acta ; 1854(10 Pt B): 1676-86, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25882195

ABSTRACT

A SILAC analysis performed on HEK-293T cells either treated or not for 3h with the CK2 inhibitor quinalizarin (QZ) led to the quantification of 53 phosphopeptides whose amount was reduced by 50% or more by QZ. These phosphopeptides include altogether 69 phosphoresidues, a large proportion of which (almost 50%) are generated by CK2, while the others do not conform to the CK2 consensus. Intriguingly QZ treatment also promotes a 50% or more increase of 108 phosphopeptides including altogether 117 phosphoresidues, 30% of which conform to the CK2 consensus. Here we disclose two mechanisms by which the level of certain phosphosites can be increased rather than decreased by QZ: one relies on the uneven dephosphorylation rate of phosphoresidues close to each other, causing, upon CK2 blockage, the decrease/disappearance of bis-phosphorylated peptides paralleled by the rise of one of its two singly phosphorylated derivatives; the other reflects the increased cellular concentration of a subset of proteins whose expression is substantially up-regulated by QZ treatment. These proteins do not include CK2 itself, whose subunit level is unaffected by QZ. They do include instead a number of substrates whose phosphorylation is increased upon QZ treatment, as well as several kinase/phosphatase regulators and a large number of components of the ribosomal and proteasomal machinery, a circumstance that may partially account for side effects of QZ not directly executed by CK2. Especially remarkable is the finding that all the components of the proteasomal catalytic core and of the PA28 complex committed to the degradation of the non-ubiquitinated proteins are increased, while those of the regulatory complex 19S conferring the ability to degrade the ubiquitinated proteins are unaffected. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.


Subject(s)
Anthraquinones/pharmacology , Casein Kinase II/metabolism , Phosphopeptides/biosynthesis , Protein Kinase Inhibitors/pharmacology , Casein Kinase II/antagonists & inhibitors , Gene Expression Regulation, Enzymologic/drug effects , Humans , Phosphopeptides/metabolism , Proteomics
13.
Biochim Biophys Acta ; 1854(6): 609-23, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25278378

ABSTRACT

CK2 is an extremely pleiotropic Ser/Thr protein kinase, responsible for the generation of a large proportion of the human phosphoproteome and implicated in a wide variety of biological functions. CK2 plays a global role as an anti-apoptotic agent, a property which is believed to partially account for the addiction of many cancer cells to high CK2 levels. To gain information about the CK2 targets whose phosphorylation is primarily implicated in its pro-survival signaling advantage has been taken of quinalizarin (QZ) a cell permeable fairly specific CK2 inhibitor, previously shown to be able to block endogenous CK2 triggering an apoptotic response. HEK-293T cells either treated or not for 3h with 50µM QZ were exploited to perform a quantitative SILAC phosphoproteomic analysis of phosphosites readily responsive to QZ treatment. Our analysis led to the identification of 4883 phosphosites, belonging to 1693 phosphoproteins. 71 phosphosites (belonging to 47 proteins) underwent a 50% or more decreased occupancy upon QZ treatment. Almost 50% of these fulfilled the typical consensus sequence recognized by CK2 (S/T-x-x-E/D/pS) and in several cases were validated as bona fide substrates of CK2 either based on data in the literature or by performing in vitro phosphorylation experiments with purified proteins. The majority of the remaining phosphosites drastically decreased upon QZ treatment display the pS/T-P motif typical of proline directed protein kinases and a web logo extracted from them differentiates from the web logo extracted from all the proline directed phosphosites quantified during our analysis (1151 altogether). A paradoxical outcome of our study was the detection of 116 phosphosites (belonging to 92 proteins altogether) whose occupancy is substantially increased (50% or more), rather than decreased by QZ treatment: 40% of these display the typical motif recognized by proline directed kinases, while about 25% fulfill the CK2 consensus. Collectively taken our data on one side have led to the disclosure of a subset of CK2 targets which are likely to be implicated in the early steps of CK2 signaling counteracting apoptosis, on the other they provide evidence for the existence of side and off-target effects of the CK2 inhibitor quinalizarin, paving the road toward the detection of other kinases susceptible to this compound. This article is part of a Special Issue entitled: Medical Proteomics.


Subject(s)
Anthraquinones/pharmacology , Casein Kinase II/antagonists & inhibitors , Phosphoproteins/metabolism , Protein Kinase Inhibitors/pharmacology , Proteome/metabolism , HEK293 Cells , Humans
14.
Biochim Biophys Acta ; 1853(7): 1693-701, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25887626

ABSTRACT

In eukaryotic protein synthesis the translation initiation factor 3 (eIF3) is a key player in the recruitment and assembly of the translation initiation machinery. Mammalian eIF3 consists of 13 subunits, including the loosely associated eIF3j subunit that plays a stabilizing role in the eIF3 complex formation and interaction with the 40S ribosomal subunit. By means of both co-immunoprecipitation and mass spectrometry analyses we demonstrate that the protein kinase CK2 interacts with and phosphorylates eIF3j at Ser127. Inhibition of CK2 activity by CX-4945 or down-regulation of the expression of CK2 catalytic subunit by siRNA cause the dissociation of j-subunit from the eIF3 complex as judged from glycerol gradient sedimentation. This finding proves that CK2-phosphorylation of eIF3j is a prerequisite for its association with the eIF3 complex. Expression of Ser127Ala-eIF3j mutant impairs both the interaction of mutated j-subunit with the other eIF3 subunits and the overall protein synthesis. Taken together our data demonstrate that CK2-phosphorylation of eIF3j at Ser127 promotes the assembly of the eIF3 complex, a crucial step in the activation of the translation initiation machinery.


Subject(s)
Casein Kinase II/metabolism , Eukaryotic Initiation Factor-3/metabolism , Phosphoserine/metabolism , Protein Biosynthesis , Casein Kinase II/antagonists & inhibitors , Gene Silencing/drug effects , HEK293 Cells , HeLa Cells , Humans , Mutation/genetics , Naphthyridines/pharmacology , Phenazines , Phosphorylation/drug effects , Protein Binding/drug effects , Protein Biosynthesis/drug effects , Protein Subunits/metabolism , Substrate Specificity/drug effects
15.
Plant Physiol ; 168(4): 1747-61, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26069151

ABSTRACT

Light is the primary energy source for photosynthetic organisms, but in excess, it can generate reactive oxygen species and lead to cell damage. Plants evolved multiple mechanisms to modulate light use efficiency depending on illumination intensity to thrive in a highly dynamic natural environment. One of the main mechanisms for protection from intense illumination is the dissipation of excess excitation energy as heat, a process called nonphotochemical quenching. In plants, nonphotochemical quenching induction depends on the generation of a pH gradient across thylakoid membranes and on the presence of a protein called PHOTOSYSTEM II SUBUNIT S (PSBS). Here, we generated Physcomitrella patens lines expressing histidine-tagged PSBS that were exploited to purify the native protein by affinity chromatography. The mild conditions used in the purification allowed copurifying PSBS with its interactors, which were identified by mass spectrometry analysis to be mainly photosystem II antenna proteins, such as LIGHT-HARVESTING COMPLEX B (LHCB). PSBS interaction with other proteins appears to be promiscuous and not exclusive, although the major proteins copurified with PSBS were components of the LHCII trimers (LHCB3 and LHCBM). These results provide evidence of a physical interaction between specific photosystem II light-harvesting complexes and PSBS in the thylakoids, suggesting that these subunits are major players in heat dissipation of excess energy.


Subject(s)
Light-Harvesting Protein Complexes/metabolism , Photosystem II Protein Complex/metabolism , Plant Proteins/metabolism , Thylakoids/metabolism , Amino Acid Sequence , Bryopsida/genetics , Bryopsida/metabolism , Bryopsida/radiation effects , Chlorophyll/metabolism , Fluorescence , Immunoblotting , Light , Light-Harvesting Protein Complexes/classification , Light-Harvesting Protein Complexes/genetics , Mass Spectrometry , Molecular Sequence Data , Mutation , Photosystem II Protein Complex/classification , Photosystem II Protein Complex/genetics , Phylogeny , Plant Proteins/genetics , Plants, Genetically Modified , Protein Binding , Streptophyta/classification , Streptophyta/genetics , Streptophyta/metabolism , Thylakoids/genetics , Zeaxanthins/metabolism
16.
Int J Mol Sci ; 17(4): 540, 2016 Apr 09.
Article in English | MEDLINE | ID: mdl-27070597

ABSTRACT

Uterine leiomyoma is the most common benign smooth muscle cell tumor of the uterus. Proteomics is a powerful tool for the analysis of complex mixtures of proteins. In our study, we focused on proteins that were upregulated in the leiomyoma compared to the myometrium. Paired samples of eight leiomyomas and adjacent myometrium were obtained and submitted to two-dimensional gel electrophoresis (2-DE) and mass spectrometry for protein identification and to Western blotting for 2-DE data validation. The comparison between the patterns revealed 24 significantly upregulated (p < 0.05) protein spots, 12 of which were found to be associated with the metabolic processes of the leiomyoma and not with the normal myometrium. The overexpression of seven proteins involved in the metabolic processes of the leiomyoma was further validated by Western blotting and 2D Western blotting. Four of these proteins have never been associated with the leiomyoma before. The 2-DE approach coupled with mass spectrometry, which is among the methods of choice for comparative proteomic studies, identified a number of proteins overexpressed in the leiomyoma and involved in several biological processes, including metabolic processes. A better understanding of the mechanism underlying the overexpression of these proteins may be important for therapeutic purposes.


Subject(s)
Leiomyoma/metabolism , Proteome/metabolism , Proteomics/methods , Up-Regulation , Uterine Neoplasms/metabolism , Electrophoresis, Gel, Two-Dimensional , Female , Gene Expression Regulation, Neoplastic , Humans , Mass Spectrometry/methods , Myometrium/metabolism
17.
J Proteomics ; 304: 105230, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901800

ABSTRACT

Life cycle of the dimorphic sugarcane smut fungi, Sporisorium scitamineum, involves recognition and mating of compatible saprophytic yeast-like haploid sporidia (MAT-1 and MAT-2) that upon fusion, develop into infective dikaryotic mycelia. Although the dimorphic transition is intrinsically linked with the pathogenicity and virulence of S. scitamineum, it has never been studied using a proteomic approach. In the present study, an iTRAQ-based comparative proteomic analysis of three distinct stages was carried out. The stages were: the dimorphic transition period - haploid sporidial stage (MAT-1 and MAT-2); the transition phase (24 h post co-culturing (hpc)) and the dikaryotic mycelial stage (48 hpc). Functional categorization of differentially abundant proteins showed that the most altered biological processes were energy production, primary metabolism, especially, carbohydrate, amino acid, fatty acid, followed by translation, post-translation and protein turnover. Several differentially abundant proteins (DAPs), especially in the dikaryotic mycelial stage were predicted as effectors. Taken together, key molecular mechanisms underpinning the dimorphic transition in S. scitamineum at the proteome level were highlighted. The catalogue of stage-specific and dimorphic transition-associated-proteins and potential effectors identified herein represents a list of potential candidates for defective mutant screening to elucidate their functional role in the dimorphic transition and pathogenicity in S. scitamineum. BIOLOGICAL SIGNIFICANCE: Being the first comparative proteomics analysis of S. scitamineum, this study comprehensively examined three pivotal life cycle stages of the pathogen: the non-pathogenic haploid phase, the transition phase, and the pathogenic dikaryotic mycelial stage. While previous studies have reported the sugarcane and S. scitamineum interactions, this study endeavored to specifically identify the proteins responsible for pathogenicity. By analyzing the proteomic alterations between the haploid and dikaryotic mycelial phases, the study revealed significant changes in metabolic pathway-associated proteins linked to energy production, notably oxidative phosphorylation, and the citrate cycle. Furthermore, this study successfully identified key metabolic pathways that undergo reprogramming during the transition from the non-pathogenic to the pathogenic stage. The study also deciphered the underlying mechanisms driving the morphological and physiological alterations crucial for the S. scitamineum virulence. By studying its life cycle stages, identifying the key metabolic pathways and stage-specific proteins, it provides unprecedented insights into the pathogenicity and potential avenues for intervention. As proteomics continues to advance, such studies pave the way for a deeper understanding of plant-pathogen interactions and the development of innovative strategies to mitigate the impact of devastating pathogens like S. scitamineum.

18.
J Agric Food Chem ; 71(44): 16827-16839, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37890871

ABSTRACT

Early detection of bovine subclinical mastitis may improve treatment strategies and reduce the use of antibiotics. Herein, individual milk samples from Holstein cows affected by subclinical mastitis induced by S. agalactiae and Prototheca spp. were analyzed by untargeted and targeted mass spectrometry approaches to assess changes in their peptidome profiles and identify new potential biomarkers of the pathological condition. Results showed a higher amount of peptides in milk positive on the bacteriological examination when compared with the negative control. However, the different pathogens seemed not to trigger specific effects on the milk peptidome. The peptides that best distinguish positive from negative samples are mainly derived from the most abundant milk proteins, especially from ß- and αs1-casein, but also include the antimicrobial peptide casecidin 17. These results provide new insights into the physiopathology of mastitis. Upon further validation, the panel of potential discriminant peptides could help the development of new diagnostic and therapeutic tools.


Subject(s)
Mastitis, Bovine , Prototheca , Cattle , Animals , Female , Humans , Streptococcus agalactiae , Mastitis, Bovine/diagnosis , Caseins , Antimicrobial Peptides
19.
Food Res Int ; 172: 113101, 2023 10.
Article in English | MEDLINE | ID: mdl-37689865

ABSTRACT

Cheese production is an applied biotechnology whose proper outcome relies strictly on the complex interactive dynamics which unfold within defined microbial groups. These may start being active from the collection of milk and continue up to its final stages of maturation. One of the critical parameters playing a major role is the milk refrigeration temperature before pasteurization as it can affect the proportion of psychrotrophic taxa abundance in the total milk bacterial population. While a standard temperature of 4 °C is the common choice, due to its general growth control effect, it does have a potential drawback. This is due to the fact that some cold-tolerant genera present a proteolytic activity with uncompleted proliferation, which could negatively affect curd clotting and regular cheese maturation. Moreover, accidental thermal variations of milk before cheese-making, in a plus or minus direction, can occur both at farm collection sites and during transfer to dairy plant. This present research, directly commissioned by a major fresh cheese-producing company, includes an in-factory trial. In this trial, a gradient of temperatures from 4 °C to 13 °C, which were subsequently reversed, was purposely adopted to: (a) verify sensory alterations in the resulting product at different maturation stages, and, (b) analyze, in parallel, using DNA extraction and 16S-metabarcoding sequencing from the same samples, the presence, abundance and corresponding taxonomical identity of all the bacteria featured in communities found in milk and cheese samples. Overall, 1,714 different variants were detected and sorted into 394 identified taxa. Significant bacterial community shifts in cheese were observed in response to milk refrigeration temperature and subsequently associated with samples having altered scores in sensory panel tests. In particular, proteolytic psychrotrophes were outcompeted by Enterobacteriales and by other taxa at the peak temperature of 13 °C, but aggressively increased in the descent phases, upon the cooling down of milk to values of 7 °C. Relevant clues have been collected for better anticipation of thermal abuse effects or parameter variations allowing for improved handling of technical processing conditions by the cheese manufacturing industry.


Subject(s)
Cheese , Microbiota , Animals , Temperature , Milk , Cold Temperature
20.
J Hematol Oncol ; 16(1): 33, 2023 04 03.
Article in English | MEDLINE | ID: mdl-37013641

ABSTRACT

In human cells BRAF oncogene is invariably expressed as a mix of two coding transcripts: BRAF-ref and BRAF-X1. These two mRNA isoforms, remarkably different in the sequence and length of their 3'UTRs, are potentially involved in distinct post-transcriptional regulatory circuits. Herein, we identify PARP1 among the mRNA Binding Proteins that specifically target the X1 3'UTR in melanoma cells. Mechanistically, PARP1 Zinc Finger domain down-regulates BRAF expression at the translational level. As a consequence, it exerts a negative impact on MAPK pathway, and sensitizes melanoma cells to BRAF and MEK inhibitors, both in vitro and in vivo. In summary, our study unveils PARP1 as a negative regulator of the highly oncogenic MAPK pathway in melanoma, through the modulation of BRAF-X1 expression.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Humans , Vemurafenib , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Indoles/pharmacology , Sulfonamides/pharmacology , Melanoma/genetics , Melanoma/metabolism , Protein Kinase Inhibitors/pharmacology , Cell Line, Tumor , MAP Kinase Signaling System , Poly (ADP-Ribose) Polymerase-1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL