Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(4): e2211933120, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36656866

ABSTRACT

Metformin is the most prescribed drug for DM2, but its site and mechanism of action are still not well established. Here, we investigated the effects of metformin on basolateral intestinal glucose uptake (BIGU), and its consequences on hepatic glucose production (HGP). In diabetic patients and mice, the primary site of metformin action was the gut, increasing BIGU, evaluated through PET-CT. In mice and CaCo2 cells, this increase in BIGU resulted from an increase in GLUT1 and GLUT2, secondary to ATF4 and AMPK. In hyperglycemia, metformin increased the lactate (reducing pH and bicarbonate in portal vein) and acetate production in the gut, modulating liver pyruvate carboxylase, MPC1/2, and FBP1, establishing a gut-liver crosstalk that reduces HGP. In normoglycemia, metformin-induced increases in BIGU is accompanied by hypoglycemia in the portal vein, generating a counter-regulatory mechanism that avoids reductions or even increases HGP. In summary, metformin increases BIGU and through gut-liver crosstalk influences HGP.


Subject(s)
Gastrointestinal Tract , Glucose , Liver , Metformin , Animals , Humans , Mice , Caco-2 Cells , Diabetes Mellitus, Type 2 , Glucose/metabolism , Hypoglycemic Agents/pharmacology , Liver/metabolism , Metformin/pharmacology , Positron Emission Tomography Computed Tomography , Gastrointestinal Tract/metabolism
2.
J Physiol ; 600(11): 2651-2667, 2022 06.
Article in English | MEDLINE | ID: mdl-35489088

ABSTRACT

Little is currently known about possible developmental changes in myocardial Na+ handling, which may have impact on cell excitability and Ca2+ content. Resting intracellular Na+ concentration ([Na+ ]i ), measured in freshly isolated rat ventricular myocytes with CoroNa green, was not significantly different in neonates (3-5 days old) and adults, but electrical stimulation caused marked [Na+ ]i rise only in neonates. Inhibition of L-type Ca2+ current by CdCl2 abolished not only systolic Ca2+ transients, but also activity-dependent intracellular Na+ accumulation in immature cells. This indicates that the main Na+ influx pathway during activity is the Na+ /Ca2+ exchanger, rather than voltage-dependent Na+ current (INa ), which was not affected by CdCl2 . In immature myocytes, INa density was two-fold greater, inactivation was faster, and the current peak occurred at less negative transmembrane potential (Em ) than in adults. Na+ channel steady-state activation and inactivation curves in neonates showed a rightward shift, which should increase channel availability at diastolic Em , but also require greater depolarization for excitation, which was observed experimentally and reproduced in computer simulations. Ventricular mRNA levels of Nav 1.1, Nav 1.4 and Nav 1.5 pore-forming isoforms were greater in neonate ventricles, while a decrease was seen for the ß1 subunit. Both molecular and biophysical changes in the channel profile may contribute to the differences in INa density and voltage-dependence, and also to the less negative threshold Em , in neonates compared to adults. The apparently lower excitability in immature ventricle may confer protection against the development of spontaneous activity in this tissue. KEY POINTS: Previous studies showed that myocardial preparations from immature rats are less sensitive to electrical field stimulation than adult preparations. Freshly isolated ventricular myocytes from neonatal rats showed lower excitability than adult cells, e.g. less negative threshold membrane potential and greater membrane depolarization required for action potential triggering. In addition to differences in mRNA levels for Na+ channel isoforms and greater Na+ current (INa ) density, Na+ channel voltage-dependence was shifted to the right in immature myocytes, which seems to be sufficient to decrease excitability, according to computer simulations. Only in neonatal myocytes did cyclic activity promote marked cytosolic Na+ accumulation, which was prevented by abolition of systolic Ca2+ transients by blockade of Ca2+ currents. Developmental changes in INa may account for the difference in action potential initiation parameters, but not for cytosolic Na+ accumulation, which seems to be due mainly to Na+ /Ca2+ exchanger-mediated Na+ influx.


Subject(s)
Myocardium , Sodium , Action Potentials , Animals , Calcium/metabolism , Myocardium/metabolism , Myocytes, Cardiac/physiology , Protein Isoforms/metabolism , RNA, Messenger/metabolism , Rats , Sodium/metabolism , Sodium-Calcium Exchanger/metabolism
3.
J Intern Med ; 292(4): 654-666, 2022 10.
Article in English | MEDLINE | ID: mdl-35599154

ABSTRACT

BACKGROUND: The Bacillus Calmette-Guérin (BCG) vaccine may confer cross-protection against viral diseases in adults. This study evaluated BCG vaccine cross-protection in adults with convalescent coronavirus disease 2019 (COVID-19). METHOD: This was a multicenter, prospective, randomized, placebo-controlled, double-blind phase III study (ClinicalTrials.gov: NCT04369794). SETTING: University Community Health Center and Municipal Outpatient Center in South America. PATIENTS: a total of 378 adult patients with convalescent COVID-19 were included. INTERVENTION: single intradermal BCG vaccine (n = 183) and placebo (n = 195). MEASUREMENTS: the primary outcome was clinical evolution. Other outcomes included adverse events and humoral immune responses for up to 6 months. RESULTS: A significantly higher proportion of BCG patients with anosmia and ageusia recovered at the 6-week follow-up visit than placebo (anosmia: 83.1% vs. 68.7% healed, p = 0.043, number needed to treat [NNT] = 6.9; ageusia: 81.2% vs. 63.4% healed, p = 0.032, NNT = 5.6). BCG also prevented the appearance of ageusia in the following weeks: seven in 113 (6.2%) BCG recipients versus 19 in 126 (15.1%) placebos, p = 0.036, NNT = 11.2. BCG did not induce any severe or systemic adverse effects. The most common and expected adverse effects were local vaccine lesions, erythema (n = 152; 86.4%), and papules (n = 111; 63.1%). Anti-severe acute respiratory syndrome coronavirus 2 humoral response measured by N protein immunoglobulin G titer and seroneutralization by interacting with the angiotensin-converting enzyme 2 receptor suggest that the serum of BCG-injected patients may neutralize the virus at lower specificity; however, the results were not statistically significant. CONCLUSION: BCG vaccine is safe and offers cross-protection against COVID-19 with potential humoral response modulation. LIMITATIONS: No severely ill patients were included.


Subject(s)
Ageusia , COVID-19 , Adult , Angiotensin-Converting Enzyme 2 , Anosmia , BCG Vaccine/adverse effects , COVID-19/prevention & control , Double-Blind Method , Humans , Immunity, Humoral , Immunoglobulin G , Prospective Studies
4.
J Med Virol ; 94(8): 3714-3721, 2022 08.
Article in English | MEDLINE | ID: mdl-35420709

ABSTRACT

Vaccination certainly is the best way to fight against the COVID-19 pandemic. In this study, the seroconversion effectiveness of two vaccines against severe acute respiratory syndrome coronavirus 2 was assessed in healthcare workers: virus-inactivated CoronaVac (CV, n = 303), and adenovirus-vectored Oxford-AstraZeneca (AZ, n = 447). The immunoglobulin G (IgG) antibodies anti-spike glycoprotein and anti-nucleocapsid protein were assessed by enzyme-linked immunosorbent assay at the time before vaccination (T1), before the second dose (T2), and 30 days after the second dose (T3). Of all individuals vaccinated with AZ, 100% (n = 447) exhibited seroconversion, compared to 91% (n = 276) that were given CV vaccine. Among individuals who did not respond to the CV, only three individuals showed a significant increase in the antibody level 4 months later the booster dose. A lower seroconversion rate was observed in elders immunized with the CV vaccine probably due to the natural immune senescence, or peculiarity of this vaccine. The AZ vaccine induced a higher humoral response; however, more common side effects were also observed. Nonvaccinated convalescent individuals revealed a similar rate of anti-spike IgG to individuals that were given two doses of CV vaccine, which suggests that only a one-shot COVID-19 vaccine could produce an effective immune response in convalescents.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adenoviridae/genetics , Aged , Antibodies, Viral , Brazil , COVID-19/prevention & control , Health Personnel , Humans , Immunoglobulin G , Pandemics/prevention & control
5.
Eur Respir J ; 58(1)2021 07.
Article in English | MEDLINE | ID: mdl-33361100

ABSTRACT

BACKGROUND: Nitazoxanide is widely available and exerts broad-spectrum antiviral activity in vitro. However, there is no evidence of its impact on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. METHODS: In a multicentre, randomised, double-blind, placebo-controlled trial, adult patients presenting up to 3 days after onset of coronavirus disease 2019 (COVID-19) symptoms (dry cough, fever and/or fatigue) were enrolled. After confirmation of SARS-CoV-2 infection using reverse transcriptase PCR on a nasopharyngeal swab, patients were randomised 1:1 to receive either nitazoxanide (500 mg) or placebo, three times daily, for 5 days. The primary outcome was complete resolution of symptoms. Secondary outcomes were viral load, laboratory tests, serum biomarkers of inflammation and hospitalisation rate. Adverse events were also assessed. RESULTS: From June 8 to August 20, 2020, 1575 patients were screened. Of these, 392 (198 placebo, 194 nitazoxanide) were analysed. Median (interquartile range) time from symptom onset to first dose of study drug was 5 (4-5) days. At the 5-day study visit, symptom resolution did not differ between the nitazoxanide and placebo arms. Swabs collected were negative for SARS-CoV-2 in 29.9% of patients in the nitazoxanide arm versus 18.2% in the placebo arm (p=0.009). Viral load was reduced after nitazoxanide compared to placebo (p=0.006). The percentage viral load reduction from onset to end of therapy was higher with nitazoxanide (55%) than placebo (45%) (p=0.013). Other secondary outcomes were not significantly different. No serious adverse events were observed. CONCLUSIONS: In patients with mild COVID-19, symptom resolution did not differ between nitazoxanide and placebo groups after 5 days of therapy. However, early nitazoxanide therapy was safe and reduced viral load significantly.


Subject(s)
COVID-19 , Adult , Humans , Nitro Compounds , SARS-CoV-2 , Thiazoles , Treatment Outcome
6.
BMC Pregnancy Childbirth ; 16(1): 212, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27503110

ABSTRACT

BACKGROUND: Spontaneous preterm birth is a complex syndrome with multiple pathways interactions determining its occurrence, including genetic, immunological, physiologic, biochemical and environmental factors. Despite great worldwide efforts in preterm birth prevention, there are no recent effective therapeutic strategies able to decrease spontaneous preterm birth rates or their consequent neonatal morbidity/mortality. The Preterm SAMBA study will associate metabolomics technologies to identify clinical and metabolite predictors for preterm birth. These innovative and unbiased techniques might be a strategic key to advance spontaneous preterm birth prediction. METHODS/DESIGN: Preterm SAMBA study consists of a discovery phase to identify biophysical and untargeted metabolomics from blood and hair samples associated with preterm birth, plus a validation phase to evaluate the performance of the predictive modelling. The first phase, a case-control study, will randomly select 100 women who had a spontaneous preterm birth (before 37 weeks) and 100 women who had term birth in the Cork Ireland and Auckland New Zealand cohorts within the SCOPE study, an international consortium aimed to identify potential metabolomic predictors using biophysical data and blood samples collected at 20 weeks of gestation. The validation phase will recruit 1150 Brazilian pregnant women from five participant centres and will collect blood and hair samples at 20 weeks of gestation to evaluate the performance of the algorithm model (sensitivity, specificity, predictive values and likelihood ratios) in predicting spontaneous preterm birth (before 34 weeks, with a secondary analysis of delivery before 37 weeks). DISCUSSION: The Preterm SAMBA study intends to step forward on preterm birth prediction using metabolomics techniques, and accurate protocols for sample collection among multi-ethnic populations. The use of metabolomics in medical science research is innovative and promises to provide solutions for disorders with multiple complex underlying determinants such as spontaneous preterm birth.


Subject(s)
Algorithms , Metabolomics , Pregnancy Trimester, Second/metabolism , Premature Birth/diagnosis , Prenatal Diagnosis/methods , Biomarkers/analysis , Brazil , Case-Control Studies , Clinical Protocols , Female , Hair/metabolism , Humans , Infant, Newborn , Ireland , New Zealand , Predictive Value of Tests , Pregnancy , Risk Factors , Sensitivity and Specificity
7.
Nat Chem Biol ; 8(1): 102-10, 2011 Nov 20.
Article in English | MEDLINE | ID: mdl-22101605

ABSTRACT

Focal adhesion kinase (FAK) regulates cellular processes that affect several aspects of development and disease. The FAK N-terminal FERM (4.1 protein-ezrin-radixin-moesin homology) domain, a compact clover-leaf structure, binds partner proteins and mediates intramolecular regulatory interactions. Combined chemical cross-linking coupled to MS, small-angle X-ray scattering, computational docking and mutational analyses showed that the FAK FERM domain has a molecular cleft (~998 Å(2)) that interacts with sarcomeric myosin, resulting in FAK inhibition. Accordingly, mutations in a unique short amino acid sequence of the FERM myosin cleft, FP-1, impaired the interaction with myosin and enhanced FAK activity in cardiomyocytes. An FP-1 decoy peptide selectively inhibited myosin interaction and increased FAK activity, promoting cardiomyocyte hypertrophy through activation of the AKT-mammalian target of rapamycin pathway. Our findings uncover an inhibitory interaction between the FAK FERM domain and sarcomeric myosin that presents potential opportunities to modulate the cardiac hypertrophic response through changes in FAK activity.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases/chemistry , Myocytes, Cardiac/chemistry , Myosins/chemistry , Protein Interaction Domains and Motifs , Amino Acid Sequence , Animals , Chickens , Enzyme Activation , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Hypertrophy/metabolism , Mice , Models, Molecular , Myocytes, Cardiac/metabolism , Myosins/metabolism , Protein Structure, Quaternary , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
8.
Int J Cardiovasc Imaging ; 39(7): 1239-1250, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36997835

ABSTRACT

BACKGROUND: Heart Failure with Preserved Ejection Fraction (HFpEF) is a syndrome characterized by different degrees of exercise intolerance, which leads to poor quality of life and prognosis. Recently, the European score (HFA-PEFF) was proposed to standardize the diagnosis of HFpEF. Even though Global Longitudinal Strain (GLS) is a component of HFA-PEFF, the role of other strain parameters, such as Mechanical Dispersion (MD), has yet to be studied. In this study, we aimed to compare MD and other features from the HFA-PEFF according to their association with exercise capacity in an outpatient population of subjects at risk or suspected HFpEF. METHODS: This is a single-center cross-sectional study performed in an outpatient population of 144 subjects with a median age of 57 years, 58% females, referred to the Echocardiography and Cardiopulmonary Exercise Test to investigate HFpEF. RESULTS: MD had a higher correlation to Peak VO2 (r=-0.43) when compared to GLS (r=-0.26), MD presented a significant correlation to Ventilatory Anaerobic Threshold (VAT) (r=-0.20; p = 0.04), while GLS showed no correlation (r=-0.14; p = 0.15). Neither MD nor GLS showed a correlation with the time to recover VO2 after exercise (T1/2). In Receiver Operator Characteristic (ROC) analysis, MD presented superior performance to GLS to predict Peak VO2 (AUC: 0.77 vs. 0.62), VAT (AUC: 0.61 vs. 0.57), and T1/2 (AUC: 0.64 vs. 0.57). Adding MD to HFA-PEFF improved the model performance (AUC from 0.77 to 0.81). CONCLUSION: MD presented a higher association with Peak VO2 when compared to GLS and most features from the HFA-PEFF. Adding MD to the HFA-PEFF improved the model performance.


Subject(s)
Heart Failure , Female , Humans , Middle Aged , Male , Heart Failure/diagnostic imaging , Stroke Volume , Cross-Sectional Studies , Exercise Tolerance , Quality of Life , Predictive Value of Tests , Echocardiography , Ventricular Function, Left
9.
Int J Cardiol ; 380: 20-27, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36958396

ABSTRACT

BACKGROUND: Provocative maneuvers have the potential to overcome the low sensitivity of resting echocardiography and biomarkers in the detection of heart failure with preserved ejection fraction (HFpEF). We investigate the mechanical response of the left ventricle to an afterload challenge in patients with preclinical and early-stage HFpEF (es-HFpEF). METHODS: Three groups of patients (non-HFpEF - n = 42, pre-HFpEF - n = 43, and es-HFpEF - n = 39) underwent echocardiography at rest and during an afterload challenge induced by handgrip maneuver combined with pneumatic constriction of limbs. RESULTS: Patients in the non-HF group displayed a median ΔLPSS = -4% (IQR: -10%, +2%), LPSS rest<16% in 3/42(7%) and LPSS stress<16% in 6/43(14%). Subjects in the pre-HFpEF group displayed median ΔLPSS = -3% (IQR: -10%, +5%) LPSS rest<16% in 13/43(30%) and LPSS stress<16% in 19/43 (44%). 11/43 (25%) subjects in this group increased at least one absolute point in LPSS during stress. Patients in es-HFpEF group displayed a median ΔLPSS = -10% (IQR: -18%, -1%), LPSS rest<16% in 15/39(38%) and LPSS stress<16% in 25/39(64%). Changes in LPSS (ΔLPSS) were significantly greater in es-HFpEF than pre-HFpEF (p = 0.022). In multivariate analysis, this group effect was maintained after adjustment of the LPSS for systolic blood pressure, use of ß-blockers, LV mass, RWT, age, and sex. CONCLUSION: Our data suggest that patients with HFpEF have a marked decrease in peak strain during acute pressure overload. Longitudinal studies are needed to test and compare the clinical impact of each pattern in early and long-term follow-ups.


Subject(s)
Hand Strength , Heart Failure , Humans , Stroke Volume/physiology , Heart Failure/diagnostic imaging , Echocardiography , Heart Ventricles/diagnostic imaging , Ventricular Function, Left/physiology
10.
Proteomics ; 12(17): 2746-52, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22778071

ABSTRACT

Chemical cross-linking is an attractive technique for the study of the structure of protein complexes due to its low sample consumption and short analysis time. Furthermore, distance constraints obtained from the identification of cross-linked peptides by MS can be used to construct and validate protein models. If a sufficient number of distance constraints are obtained, then determining the secondary structure of a protein can allow inference of the protein's fold. In this work, we show how the distance constraints obtained from cross-linking experiments can identify secondary structures within the protein sequence. Molecular modeling of alpha helices and beta sheets reveals that each secondary structure presents different cross-linking possibilities due to the topological distances between reactive residues. Cross-linking experiments performed with amine reactive cross-linkers with model alpha helix containing proteins corroborated the molecular modeling predictions. The cross-linking patterns established here can be extended to other cross-linkers with known lengths for the determination of secondary structures in proteins.


Subject(s)
Cross-Linking Reagents/chemistry , Proteins/chemistry , Tandem Mass Spectrometry/methods , Amines/chemistry , Amino Acid Sequence , Animals , Cattle , Hemoglobins/chemistry , Horses , Molecular Dynamics Simulation , Molecular Sequence Data , Myoglobin/chemistry , Myosins/chemistry , Protein Structure, Secondary , Ubiquitin/chemistry
11.
Front Med (Lausanne) ; 9: 844728, 2022.
Article in English | MEDLINE | ID: mdl-35492335

ABSTRACT

Background: Nitazoxanide exerts antiviral activity in vitro and in vivo and anti-inflammatory effects, but its impact on patients hospitalized with COVID-19 pneumonia is uncertain. Methods: A multicentre, randomized, double-blind, placebo-controlled trial was conducted in 19 hospitals in Brazil. Hospitalized adult patients requiring supplemental oxygen, with COVID-19 symptoms and a chest computed tomography scan suggestive of viral pneumonia or positive RT-PCR test for COVID-19 were enrolled. Patients were randomized 1:1 to receive nitazoxanide (500 mg) or placebo, 3 times daily, for 5 days, and were followed for 14 days. The primary outcome was intensive care unit admission due to the need for invasive mechanical ventilation. Secondary outcomes included clinical improvement, hospital discharge, oxygen requirements, death, and adverse events within 14 days. Results: Of the 498 patients, 405 (202 in the nitazoxanide group and 203 in the placebo group) were included in the analyses. Admission to the intensive care unit did not differ between the groups (hazard ratio [95% confidence interval], 0.68 [0.38-1.20], p = 0.179); death rates also did not differ. Nitazoxanide improved the clinical outcome (2.75 [2.21-3.43], p < 0.0001), time to hospital discharge (1.37 [1.11-1.71], p = 0.005), and reduced oxygen requirements (0.77 [0.64-0.94], p = 0.011). C-reactive protein, D-dimer, and ferritin levels were lower in the nitazoxanide group than the placebo group on day 7. No serious adverse events were observed. Conclusions: Nitazoxanide, compared with placebo, did not prevent admission to the intensive care unit for patients hospitalized with COVID-19 pneumonia. Clinical Trial Registration: Brazilian Registry of Clinical Trials (REBEC) RBR88bs9x; ClinicalTrials.gov, NCT04561219.

12.
Virulence ; 13(1): 1031-1048, 2022 12.
Article in English | MEDLINE | ID: mdl-35734825

ABSTRACT

The ongoing COVID-19 pandemic caused a significant loss of human lives and a worldwide decline in quality of life. Treatment of COVID-19 patients is challenging, and specific treatments to reduce COVID-19 aggravation and mortality are still necessary. Here, we describe the discovery of a novel class of epiandrosterone steroidal compounds with cationic amphiphilic properties that present antiviral activity against SARS-CoV-2 in the low micromolar range. Compounds were identified in screening campaigns using a cytopathic effect-based assay in Vero CCL81 cells, followed by hit compound validation and characterization. Compounds LNB167 and LNB169 were selected due to their ability to reduce the levels of infectious viral progeny and viral RNA levels in Vero CCL81, HEK293, and HuH7.5 cell lines. Mechanistic studies in Vero CCL81 cells indicated that LNB167 and LNB169 inhibited the initial phase of viral replication through mechanisms involving modulation of membrane lipids and cholesterol in host cells. Selection of viral variants resistant to steroidal compound treatment revealed single mutations on transmembrane, lipid membrane-interacting Spike and Envelope proteins. Finally, in vivo testing using the hACE2 transgenic mouse model indicated that SARS-CoV-2 infection could not be ameliorated by LNB167 treatment. We conclude that anti-SARS-CoV-2 activities of steroidal compounds LNB167 and LNB169 are likely host-targeted, consistent with the properties of cationic amphiphilic compounds that modulate host cell lipid biology. Although effective in vitro, protective effects were cell-type specific and did not translate to protection in vivo, indicating that subversion of lipid membrane physiology is an important, yet complex mechanism involved in SARS-CoV-2 replication and pathogenesis.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , HEK293 Cells , Humans , Lipids , Mice , Pandemics , Quality of Life , Vero Cells , Virus Replication
13.
Am J Physiol Heart Circ Physiol ; 300(3): H902-12, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21148763

ABSTRACT

We studied the implication of focal adhesion kinase (FAK) in cardiac mitochondrial biogenesis induced by mechanical stress. Prolonged stretching (2-12 h) of neonatal rat ventricular myocytes (NRVM) upregulated the main components of mitochondrial transcription cascade [peroxisome proliferator-activated receptor coactivator-1 (PGC-1α), nuclear respiratory factor (NRF-1), and mitochondrial transcription factor A]. Concomitantly, prolonged stretching enhanced mitochondrial biogenesis [copy number of mitochondrial DNA (mtDNA), content of the subunit IV of cytochrome oxidase, and mitochondrial staining-green fluorescence intensity of Mitotracker green] and induced the hypertrophic growth (cell size and atrial natriuretic peptide transcripts) of NRVM. Furthermore, the stretching of NRVM enhanced phosphorylation, nuclear localization, and association of FAK with PGC-1α. Recombinant FAK COOH-terminal, but not the NH(2)-terminal or kinase domain, precipitated PGC-1α from nuclear extracts of NRVM. Depletion of FAK by RNA interference suppressed the upregulation of PGC-1α and NRF-1 and markedly attenuated the enhanced mitochondrial biogenesis and hypertrophic growth of stretched NRVM. In the context of energy metabolism, FAK depletion became manifest by a reduction of ATP levels in stretched NRVM. Complementary studies in adult mice left ventricle demonstrated that pressure overload upregulated PGC-1α, NRF-1, and mtDNA. In vivo FAK silencing transiently attenuated the upregulation of PGC-1α, NRF-1, and mtDNA, as well as the left ventricular hypertrophy induced by pressure overload. In conclusion, activation of FAK signaling seems to be important for conferring enhanced mitochondrial biogenesis coupled to the hypertrophic growth of cardiomyocytes in response to mechanical stress, via control of mitochondrial transcription cascade.


Subject(s)
Focal Adhesion Kinase 1/metabolism , Mitochondria, Heart/enzymology , Myocytes, Cardiac/enzymology , Stress, Mechanical , Animals , Animals, Newborn , Cells, Cultured , DNA, Mitochondrial/metabolism , DNA, Mitochondrial/physiology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Electron Transport Complex IV/metabolism , Electron Transport Complex IV/physiology , Mice , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/physiology , Myocytes, Cardiac/physiology , NF-E2-Related Factor 1/metabolism , NF-E2-Related Factor 1/physiology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/physiology , Rats , Rats, Wistar , Transcription Factors/metabolism , Transcription Factors/physiology , Up-Regulation
14.
BMC Med Genet ; 12: 114, 2011 Aug 31.
Article in English | MEDLINE | ID: mdl-21884584

ABSTRACT

BACKGROUND: Reactive oxygen species have been implicated in the physiopathogenesis of hypertensive end-organ damage. This study investigated the impact of the C242T polymorphism of the p22-phox gene (CYBA) on left ventricular structure in Brazilian hypertensive subjects. METHODS: We cross-sectionally evaluated 561 patients from 2 independent centers [Campinas (n = 441) and Vitória (n = 120)] by clinical history, physical examination, anthropometry, analysis of metabolic and echocardiography parameters as well as p22-phox C242T polymorphism genotyping. In addition, NADPH-oxidase activity was quantified in peripheral mononuclear cells from a subgroup of Campinas sample. RESULTS: Genotype frequencies in both samples were consistent with the Hardy- Weinberg equilibrium. Subjects with the T allele presented higher left ventricular mass/height2.7 than those carrying the CC genotype in Campinas (76.8 ± 1.6 vs 70.9 ± 1.4 g/m2.7; p = 0.009), and in Vitória (45.6 ± 1.9 vs 39.9 ± 1.4 g/m2.7; p = 0.023) samples. These results were confirmed by stepwise regression analyses adjusted for age, gender, blood pressure, metabolic variables and use of anti-hypertensive medications. In addition, increased NADPH-oxidase activity was detected in peripheral mononuclear cells from T allele carriers compared with CC genotype carriers (p = 0.03). CONCLUSIONS: The T allele of the p22-phox C242T polymorphism is associated with higher left ventricular mass/height 2.7 and increased NADPH-oxidase activity in Brazilian hypertensive patients. These data suggest that genetic variation within NADPH-oxidase components may modulate left ventricular remodeling in subjects with systemic hypertension.


Subject(s)
Hypertension/genetics , Hypertension/pathology , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/pathology , NADPH Oxidases/genetics , Polymorphism, Single Nucleotide , Alleles , Brazil , Cross-Sectional Studies , Female , Gene Frequency , Humans , Hypertension/enzymology , Hypertrophy, Left Ventricular/enzymology , Male , Middle Aged , NADPH Oxidases/blood , Ventricular Remodeling/genetics , Ventricular Remodeling/physiology
15.
J Nutr ; 141(5): 877-82, 2011 May.
Article in English | MEDLINE | ID: mdl-21430243

ABSTRACT

The mechanisms by which dietary sodium modulates cardiovascular risk are not fully understood. This study investigated whether sodium intake is related to carotid structure and hemodynamics and to plasma matrix metalloproteinase (MMP) activity in hypertensive adults. One hundred thirty-four participants were cross-sectionally evaluated by clinical history, anthropometry, carotid ultrasound, and analysis of hemodynamic, inflammatory, and metabolic variables. Daily sodium intake (DSI) was estimated by 24-h recall, discretionary sodium, and a FFQ. In 42 patients, plasma MMP-2 and MMP-9 activities were also analyzed. The mean DSI was 5.52 ± 0.29 g/d. Univariate analysis showed that DSI correlated with common carotid artery systolic and diastolic diameter (r = 0.36 and 0.34; both P < 0.001), peak and mean circumferential tension (r = 0.44 and 0.39; both P < 0.001), Young's Elastic Modulus (r = 0.40; P < 0.001), intima-media thickness (r = 0.19; P < 0.05), and internal carotid artery resistive index (r = 0.20; P < 0.05). Multivariate analyses revealed that only artery diameter, circumferential wall tension, and Young's Elastic Modulus were independently associated with DSI. Conversely, plasma MMP-9 activity was associated with DSI (r = 0.53; P < 0.001) as well as with common carotid systolic diameter (r = 0.33; P < 0.05) and Young's Elastic Modulus (r = 0.38; P < 0.01). In conclusion, sodium intake is associated with carotid alterations in hypertensive adults independently of systemic hemodynamic variables. The present findings also suggest that increased MMP-9 activity might play a role in sodium-induced vascular remodeling.


Subject(s)
Carotid Artery, Common/pathology , Hypertension/blood , Hypertension/pathology , Matrix Metalloproteinase 9/blood , Sodium, Dietary/adverse effects , Up-Regulation , Body Mass Index , Cardiovascular Diseases/epidemiology , Carotid Artery, Common/chemistry , Carotid Artery, Common/diagnostic imaging , Cross-Sectional Studies , Elasticity , Female , Hemodynamics , Humans , Male , Middle Aged , Risk Factors , Surveys and Questionnaires , Ultrasonography
16.
Virology ; 562: 190-196, 2021 10.
Article in English | MEDLINE | ID: mdl-34365094

ABSTRACT

Preserving morphological features that are important for cell function and structure is a critical parameter for in vitro experiments with rat cardiomyocytes. Lentiviral vectors are commonly used as gene transfer tool because of its high flexibility, efficiency to deliver expression cassettes and versatility of transducing quiescent cells. The tropism of the recombinant viral particle can be determined depending on the virus envelope, which shows a specific binding to cell surface receptors on the target cell. The combination of promoter arrangement and viral envelope must be optimized to achieve a greater transduction efficiency and a higher transgene expression. In this study we explored the optimization of promoters and heterologous envelopes to transduce primary culture of neonatal rat ventricular myocytes. Our results suggest a robust expression driven by the cytomegalovirus promoter, and high efficiency transduction mediated by VSV-G envelope with no apparent compromising ultrastructural features of genetically modified cells.


Subject(s)
Lentivirus/genetics , Myocytes, Cardiac/cytology , Transduction, Genetic/methods , Animals , Animals, Newborn , Cells, Cultured , Cytomegalovirus/genetics , Gene Expression , Genetic Vectors , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Membrane Glycoproteins/genetics , Myocytes, Cardiac/metabolism , Promoter Regions, Genetic , Rats , Sarcomeres/ultrastructure , Transgenes , Viral Envelope Proteins/genetics , Viral Pseudotyping
17.
Front Immunol ; 12: 635701, 2021.
Article in English | MEDLINE | ID: mdl-34489923

ABSTRACT

Serological testing is a powerful tool in epidemiological studies for understanding viral circulation and assessing the effectiveness of virus control measures, as is the case of SARS-CoV-2, the pathogenic agent of COVID-19. Immunoassays can quantitatively reveal the concentration of antiviral antibodies. The assessment of antiviral antibody titers may provide information on virus exposure, and changes in IgG levels are also indicative of a reduction in viral circulation. In this work, we describe a serological study for the evaluation of antiviral IgG and IgM antibodies and their correlation with antiviral activity. The serological assay for IgG detection used two SARS-CoV-2 proteins as antigens, the nucleocapsid N protein and the 3CL protease. Cross-reactivity tests in animals have shown high selectivity for detection of antiviral antibodies, using both the N and 3CL antigens. Using samples of human serum from individuals previously diagnosed by PCR for COVID-19, we observed high sensitivity of the ELISA assay. Serological results with human samples also suggest that the combination of higher titers of antiviral IgG antibodies to different antigen targets may be associated with greater neutralization activity, which can be enhanced in the presence of antiviral IgM antibodies.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Serological Testing/methods , COVID-19/diagnosis , COVID-19/prevention & control , Immunologic Surveillance , SARS-CoV-2/immunology , Animals , Antibodies, Viral/blood , Antigens, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Serological Testing/standards , Cross Reactions , Dengue Virus/immunology , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/standards , Female , Humans , Immunoglobulin G/blood , Immunoglobulin M/blood , Mice , Mice, Inbred BALB C , Sensitivity and Specificity , Zika Virus/immunology
18.
Circ Res ; 103(8): 813-24, 2008 Oct 10.
Article in English | MEDLINE | ID: mdl-18757826

ABSTRACT

The aim of this study was to investigate whether Shp2 (Src homology region 2, phosphatase 2) controls focal adhesion kinase (FAK) activity and its trophic actions in cardiomyocytes. We show that low phosphorylation levels of FAK in nonstretched neonatal rat ventricular myocytes (NRVMs) coincided with a relatively high basal association of FAK with Shp2 and Shp2 phosphatase activity. Cyclic stretch (15% above initial length) enhanced FAK phosphorylation at Tyr397 and reduced FAK/Shp2 association and phosphatase activity in anti-Shp2 precipitates. Recombinant Shp2 C-terminal protein tyrosine phosphatase domain (Shp2-PTP) interacted with nonphosphorylated recombinant FAK and dephosphorylated FAK immunoprecipitated from NRVMs. Depletion of Shp2 by specific small interfering RNA increased the phosphorylation of FAK Tyr397, Src Tyr418, AKT Ser473, TSC2 Thr1462, and S6 kinase Thr389 and induced hypertrophy of nonstretched NRVMs. Inhibition of FAK/Src activity by PP2 {4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine} abolished the phosphorylation of AKT, TSC2, and S6 kinase, as well as the hypertrophy of NRVMs induced by Shp2 depletion. Inhibition of mTOR (mammalian target of rapamycin) with rapamycin blunted the hypertrophy in NRVMs depleted of Shp2. NRVMs treated with PP2 or depleted of FAK by specific small interfering RNA were defective in FAK, Src, extracellular signal-regulated kinase, AKT, TSC2, and S6 kinase phosphorylation, as well as in the hypertrophic response to prolonged stretch. The stretch-induced hypertrophy of NRVMs was also prevented by rapamycin. These findings demonstrate that basal Shp2 tyrosine phosphatase activity controls the size of cardiomyocytes by downregulating a pathway that involves FAK/Src and mTOR signaling pathways.


Subject(s)
Cardiomegaly/enzymology , Cell Size , Mechanotransduction, Cellular , Myocytes, Cardiac/enzymology , Protein Kinases/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , src-Family Kinases/metabolism , Animals , Animals, Newborn , Cardiomegaly/pathology , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Focal Adhesion Kinase 1/metabolism , Mechanotransduction, Cellular/drug effects , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Protein Kinases/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Proto-Oncogene Proteins c-akt/metabolism , Pyrimidines/pharmacology , RNA Interference , RNA, Small Interfering/metabolism , Rats , Rats, Wistar , Recombinant Fusion Proteins/metabolism , Ribosomal Protein S6 Kinases/metabolism , Sirolimus/pharmacology , TOR Serine-Threonine Kinases , Transfection , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/metabolism , src-Family Kinases/antagonists & inhibitors
19.
Eur J Echocardiogr ; 11(3): 302-5, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20022871

ABSTRACT

AIMS: Mitral valve prolapse (MVP) is associated with aortic root (AoR) enlargement in patients with inherited connective tissue disorders. This report evaluated whether MVP is related to AoR dimension in a large population with otherwise normal echocardiographic parameters. METHODS AND RESULTS: We retrospectively analysed echocardiograms performed by a single echocardiographer between 2001 and 2007 for various clinical indications. Six hundred and twenty-seven subjects with isolated MVP were found and then matched by sex, age, and body mass index to 627 individuals without MVP. The whole sample included 454 men and 800 women with an average age of 37.9 +/- 0.3 years and a body mass index of 23.7 +/- 0.1 kg/m(2). MVP subjects had a higher AoR diameter (30.4 +/- 0.1 vs. 29.5 +/- 0.1 cm; P < 0.0001) compared with controls. Furthermore, multivariate analyses demonstrated an independent association between MVP and AoR size (P < 0.0001) in a model that included age, gender, body mass index, body surface area, blood pressure levels, and left ventricular mass index as confounding variables. CONCLUSION: Isolated MVP is an independent predictor of greater AoR size in a large population with otherwise normal echocardiographic parameters.


Subject(s)
Aorta/diagnostic imaging , Body Weights and Measures , Mitral Valve Prolapse/diagnostic imaging , Adult , Echocardiography/methods , Female , Humans , Male , Regression Analysis , Retrospective Studies
20.
J Adv Nurs ; 66(10): 2287-96, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20735508

ABSTRACT

AIM: This paper is a report of an investigation of the relationship between health-related quality of life and left ventricular function among patients with hypertension who did not fulfil the criteria for heart failure. BACKGROUND: Heart failure is a common consequence of hypertension, with Doppler echocardiography being the gold-standard tool to evaluate left ventricular function, mainly hypertension-induced left ventricular damage. Echocardiographic data indicating poorer ventricular function have been related to lower levels of health-related quality of life in patients with systolic and/or diastolic heart failure. However, data are still lacking regarding the correlation between health-related quality of life and left ventricular function and structure in patients with hypertension who do not fulfil the criteria for heart failure. METHOD: Between September 2005 and February 2007, 98 patients with hypertension without systolic or diastolic heart failure were evaluated. Health-related quality of life was assessed using the Medical Outcomes Study Short Form-36. Left ventricular function was evaluated through Tissue Doppler echocardiography. RESULTS: Statistically significant but weak correlations (varying from r = -0.22 to 0.35) were observed between some of the Short Form-36 domains and echo data. To consider the potential effect of dyspnoea in this relationship, patients were split according to the presence or absence of the symptom. In the subgroup without dyspnoea, similar patterns of correlation were observed (varying from r = 0.26 to 0.32). In the subgroup with dyspnoea, however, more and stronger correlations were observed between echo data and health-related quality of life domains, varying from r = -0.40 to 0.50. CONCLUSION: Nurses should be aware of the relevance of evaluating the functional echocardiographic data of patients who not fulfil heart failure criteria, but who experience dyspnoea in order to implement appropriate action plans.


Subject(s)
Dyspnea/complications , Hypertension/diagnostic imaging , Hypertrophy, Left Ventricular/diagnostic imaging , Quality of Life , Body Mass Index , Clinical Nursing Research , Cross-Sectional Studies , Echocardiography, Doppler/methods , Female , Health Status , Heart Failure , Humans , Hypertension/complications , Hypertension/physiopathology , Hypertrophy, Left Ventricular/etiology , Hypertrophy, Left Ventricular/physiopathology , Male , Middle Aged , Ventricular Function, Left/physiology
SELECTION OF CITATIONS
SEARCH DETAIL