Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
BMC Genomics ; 10: 61, 2009 Feb 04.
Article in English | MEDLINE | ID: mdl-19193216

ABSTRACT

BACKGROUND: Proteomic data is a potentially rich, but arguably unexploited, data source for genome annotation. Peptide identifications from tandem mass spectrometry provide prima facie evidence for gene predictions and can discriminate over a set of candidate gene models. Here we apply this to the recently sequenced Aspergillus niger fungal genome from the Joint Genome Institutes (JGI) and another predicted protein set from another A.niger sequence. Tandem mass spectra (MS/MS) were acquired from 1d gel electrophoresis bands and searched against all available gene models using Average Peptide Scoring (APS) and reverse database searching to produce confident identifications at an acceptable false discovery rate (FDR). RESULTS: 405 identified peptide sequences were mapped to 214 different A.niger genomic loci to which 4093 predicted gene models clustered, 2872 of which contained the mapped peptides. Interestingly, 13 (6%) of these loci either had no preferred predicted gene model or the genome annotators' chosen "best" model for that genomic locus was not found to be the most parsimonious match to the identified peptides. The peptides identified also boosted confidence in predicted gene structures spanning 54 introns from different gene models. CONCLUSION: This work highlights the potential of integrating experimental proteomics data into genomic annotation pipelines much as expressed sequence tag (EST) data has been. A comparison of the published genome from another strain of A.niger sequenced by DSM showed that a number of the gene models or proteins with proteomics evidence did not occur in both genomes, further highlighting the utility of the method.


Subject(s)
Aspergillus niger/genetics , Genome, Fungal , Models, Genetic , Proteomics/methods , Amino Acid Sequence , Cluster Analysis , Databases, Protein , Molecular Sequence Data , Sequence Alignment , Tandem Mass Spectrometry
2.
Anal Chem ; 81(4): 1357-64, 2009 Feb 15.
Article in English | MEDLINE | ID: mdl-19170513

ABSTRACT

A method for performing untargeted metabolomic analysis of human serum has been developed based on protein precipitation followed by Ultra Performance Liquid Chromatography and Time-of-Flight mass spectrometry (UPLC-TOF-MS). This method was specifically designed to fulfill the requirements of a long-term metabolomic study, spanning more than 3 years, and it was subsequently thoroughly evaluated for robustness and repeatability. We describe here the observed drift in instrumental performance over time and its improvement with adjustment of the length of analytical block. The optimal setup for our purpose was further validated against a set of serum samples from 30 healthy individuals. We also assessed the reproducibility of chromatographic columns with the same chemistry of stationary phase from the same manufacturer but from different production batches. The results have allowed the authors to prepare SOPs for "fit for purpose" long-term UPLC-MS metabolomic studies, such as are being employed in the HUSERMET project. This method allows the acquisition of data and subsequent comparison of data collected across many months or years.


Subject(s)
Chromatography, Liquid/methods , Mass Spectrometry/methods , Metabolomics/methods , Serum/metabolism , Humans , Reproducibility of Results , Time Factors
3.
Anal Chem ; 81(16): 7038-46, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19606840

ABSTRACT

A method for the preparation and GC-TOF-MS analysis of human serum samples has been developed and evaluated for application in long-term metabolomic studies. Serum samples were deproteinized using 3:1 methanol/serum, dried in a vacuum concentrator, and chemically derivatized in a two-stage process. Samples were analyzed by GC-TOF-MS with a 25 min analysis time. In addition, quality control (QC) samples were used to quantify process variability. Optimization of chemical derivatization was performed. Products were found to be stable for 30 h after derivatization. An assessment of within-day repeatability and within-week reproducibility demonstrates that excellent performance is observed with our developed method. Analyses were consistent over a 5 month period. Additional method testing, using spiked serum samples, showed the ability to define metabolite differences between samples from a population and samples spiked with metabolites standards. This methodology allows the continuous acquisition and application of data acquired over many months in long-term metabolomic studies, including the HUSERMET project (http://www.husermet.org/).


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Metabolomics , Blood Proteins/analysis , Humans , Quality Control , Reproducibility of Results
4.
Metabolomics ; 11: 9-26, 2015.
Article in English | MEDLINE | ID: mdl-25598764

ABSTRACT

Phenotyping of 1,200 'healthy' adults from the UK has been performed through the investigation of diverse classes of hydrophilic and lipophilic metabolites present in serum by applying a series of chromatography-mass spectrometry platforms. These data were made robust to instrumental drift by numerical correction; this was prerequisite to allow detection of subtle metabolic differences. The variation in observed metabolite relative concentrations between the 1,200 subjects ranged from less than 5 % to more than 200 %. Variations in metabolites could be related to differences in gender, age, BMI, blood pressure, and smoking. Investigations suggest that a sample size of 600 subjects is both necessary and sufficient for robust analysis of these data. Overall, this is a large scale and non-targeted chromatographic MS-based metabolomics study, using samples from over 1,000 individuals, to provide a comprehensive measurement of their serum metabolomes. This work provides an important baseline or reference dataset for understanding the 'normal' relative concentrations and variation in the human serum metabolome. These may be related to our increasing knowledge of the human metabolic network map. Information on the Husermet study is available at http://www.husermet.org/. Importantly, all of the data are made freely available at MetaboLights (http://www.ebi.ac.uk/metabolights/).

5.
Nat Protoc ; 6(7): 1060-83, 2011 Jun 30.
Article in English | MEDLINE | ID: mdl-21720319

ABSTRACT

Metabolism has an essential role in biological systems. Identification and quantitation of the compounds in the metabolome is defined as metabolic profiling, and it is applied to define metabolic changes related to genetic differences, environmental influences and disease or drug perturbations. Chromatography-mass spectrometry (MS) platforms are frequently used to provide the sensitive and reproducible detection of hundreds to thousands of metabolites in a single biofluid or tissue sample. Here we describe the experimental workflow for long-term and large-scale metabolomic studies involving thousands of human samples with data acquired for multiple analytical batches over many months and years. Protocols for serum- and plasma-based metabolic profiling applying gas chromatography-MS (GC-MS) and ultraperformance liquid chromatography-MS (UPLC-MS) are described. These include biofluid collection, sample preparation, data acquisition, data pre-processing and quality assurance. Methods for quality control-based robust LOESS signal correction to provide signal correction and integration of data from multiple analytical batches are also described.


Subject(s)
Blood Chemical Analysis , Metabolomics/methods , Chromatography, Liquid/methods , Gas Chromatography-Mass Spectrometry/methods , Humans , Mass Spectrometry/methods , Plasma/chemistry , Serum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL