Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Nat Immunol ; 22(6): 746-756, 2021 06.
Article in English | MEDLINE | ID: mdl-34031618

ABSTRACT

T cell exhaustion presents one of the major hurdles to cancer immunotherapy. Among exhausted CD8+ tumor-infiltrating lymphocytes, the terminally exhausted subset contributes directly to tumor cell killing owing to its cytotoxic effector function. However, this subset does not respond to immune checkpoint blockades and is difficult to be reinvigorated with restored proliferative capacity. Here, we show that a half-life-extended interleukin-10-Fc fusion protein directly and potently enhanced expansion and effector function of terminally exhausted CD8+ tumor-infiltrating lymphocytes by promoting oxidative phosphorylation, a process that was independent of the progenitor exhausted T cells. Interleukin-10-Fc was a safe and highly efficient metabolic intervention that synergized with adoptive T cell transfer immunotherapy, leading to eradication of established solid tumors and durable cures in the majority of treated mice. These findings show that metabolic reprogramming by upregulating mitochondrial pyruvate carrier-dependent oxidative phosphorylation can revitalize terminally exhausted T cells and enhance the response to cancer immunotherapy.


Subject(s)
Immunotherapy, Adoptive/methods , Interleukin-10/pharmacology , Neoplasms/therapy , Oxidative Phosphorylation/drug effects , T-Lymphocytes, Cytotoxic/drug effects , Animals , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism , Cell Line, Tumor , Combined Modality Therapy/methods , Disease Models, Animal , Drug Synergism , Female , HEK293 Cells , Half-Life , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunoglobulin Fc Fragments/pharmacology , Immunoglobulin Fc Fragments/therapeutic use , Interleukin-10/therapeutic use , Mice , Mice, Transgenic , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Neoplasms/immunology , Neoplasms/pathology , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/metabolism , Receptors, Interleukin-10/metabolism , Recombinant Fusion Proteins/pharmacology , Recombinant Fusion Proteins/therapeutic use , Signal Transduction/drug effects , Signal Transduction/immunology , T-Lymphocytes, Cytotoxic/cytology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism
2.
Nat Immunol ; 22(11): 1403-1415, 2021 11.
Article in English | MEDLINE | ID: mdl-34686867

ABSTRACT

Tumor-associated macrophages (TAMs) display pro-tumorigenic phenotypes for supporting tumor progression in response to microenvironmental cues imposed by tumor and stromal cells. However, the underlying mechanisms by which tumor cells instruct TAM behavior remain elusive. Here, we uncover that tumor-cell-derived glucosylceramide stimulated unconventional endoplasmic reticulum (ER) stress responses by inducing reshuffling of lipid composition and saturation on the ER membrane in macrophages, which induced IRE1-mediated spliced XBP1 production and STAT3 activation. The cooperation of spliced XBP1 and STAT3 reinforced the pro-tumorigenic phenotype and expression of immunosuppressive genes. Ablation of XBP1 expression with genetic manipulation or ameliorating ER stress responses by facilitating LPCAT3-mediated incorporation of unsaturated lipids to the phosphatidylcholine hampered pro-tumorigenic phenotype and survival in TAMs. Together, we uncover the unexpected roles of tumor-cell-produced lipids that simultaneously orchestrate macrophage polarization and survival in tumors via induction of ER stress responses and reveal therapeutic targets for sustaining host antitumor immunity.


Subject(s)
Endoplasmic Reticulum Stress , Endoplasmic Reticulum/metabolism , Intracellular Membranes/metabolism , Macrophage Activation , Melanoma/metabolism , Membrane Lipids/metabolism , Skin Neoplasms/metabolism , Tumor-Associated Macrophages/metabolism , Animals , Cell Line, Tumor , Cell Survival , Endoplasmic Reticulum/ultrastructure , Glucosylceramidase/metabolism , Intracellular Membranes/ultrastructure , Melanoma/genetics , Melanoma/ultrastructure , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/ultrastructure , Tumor Escape , Tumor Microenvironment , Tumor-Associated Macrophages/ultrastructure , X-Box Binding Protein 1/genetics , X-Box Binding Protein 1/metabolism
3.
Nat Immunol ; 21(12): 1540-1551, 2020 12.
Article in English | MEDLINE | ID: mdl-33020660

ABSTRACT

The metabolic challenges present in tumors attenuate the metabolic fitness and antitumor activity of tumor-infiltrating T lymphocytes (TILs). However, it remains unclear whether persistent metabolic insufficiency can imprint permanent T cell dysfunction. We found that TILs accumulated depolarized mitochondria as a result of decreased mitophagy activity and displayed functional, transcriptomic and epigenetic characteristics of terminally exhausted T cells. Mechanistically, reduced mitochondrial fitness in TILs was induced by the coordination of T cell receptor stimulation, microenvironmental stressors and PD-1 signaling. Enforced accumulation of depolarized mitochondria with pharmacological inhibitors induced epigenetic reprogramming toward terminal exhaustion, indicating that mitochondrial deregulation caused T cell exhaustion. Furthermore, supplementation with nicotinamide riboside enhanced T cell mitochondrial fitness and improved responsiveness to anti-PD-1 treatment. Together, our results reveal insights into how mitochondrial dynamics and quality orchestrate T cell antitumor responses and commitment to the exhaustion program.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Lymphocyte Count , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Mitochondrial Dynamics/immunology , Biomarkers , Epigenesis, Genetic , Epigenomics , Humans , Mitochondria/drug effects , Mitochondria/immunology , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitophagy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/therapy , Niacinamide/pharmacology , Programmed Cell Death 1 Receptor/metabolism , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , Stress, Physiological , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
4.
Nat Immunol ; 21(3): 298-308, 2020 03.
Article in English | MEDLINE | ID: mdl-32066953

ABSTRACT

Depleting regulatory T cells (Treg cells) to counteract immunosuppressive features of the tumor microenvironment (TME) is an attractive strategy for cancer treatment; however, autoimmunity due to systemic impairment of their suppressive function limits its therapeutic potential. Elucidating approaches that specifically disrupt intratumoral Treg cells is direly needed for cancer immunotherapy. We found that CD36 was selectively upregulated in intrautumoral Treg cells as a central metabolic modulator. CD36 fine-tuned mitochondrial fitness via peroxisome proliferator-activated receptor-ß signaling, programming Treg cells to adapt to a lactic acid-enriched TME. Genetic ablation of Cd36 in Treg cells suppressed tumor growth accompanied by a decrease in intratumoral Treg cells and enhancement of antitumor activity in tumor-infiltrating lymphocytes without disrupting immune homeostasis. Furthermore, CD36 targeting elicited additive antitumor responses with anti-programmed cell death protein 1 therapy. Our findings uncover the unexplored metabolic adaptation that orchestrates the survival and functions of intratumoral Treg cells, and the therapeutic potential of targeting this pathway for reprogramming the TME.


Subject(s)
CD36 Antigens/immunology , Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Apoptosis/immunology , CD36 Antigens/deficiency , CD36 Antigens/genetics , Cell Line, Tumor , Female , Homeostasis/immunology , Humans , Immunotherapy , Lipid Metabolism/genetics , Lymphocytes, Tumor-Infiltrating/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms/metabolism , Neoplasms/pathology , PPAR-beta/immunology , Signal Transduction/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology , Tumor Microenvironment/immunology
5.
Nat Immunol ; 20(2): 206-217, 2019 02.
Article in English | MEDLINE | ID: mdl-30664764

ABSTRACT

Immune checkpoint blockade therapy has shifted the paradigm for cancer treatment. However, the majority of patients lack effective responses due to insufficient T cell infiltration in tumors. Here we show that expression of mitochondrial uncoupling protein 2 (UCP2) in tumor cells determines the immunostimulatory feature of the tumor microenvironment (TME) and is positively associated with prolonged survival. UCP2 reprograms the immune state of the TME by altering its cytokine milieu in an interferon regulatory factor 5-dependent manner. Consequently, UCP2 boosts the conventional type 1 dendritic cell- and CD8+ T cell-dependent anti-tumor immune cycle and normalizes the tumor vasculature. Finally we show, using either a genetic or pharmacological approach, that induction of UCP2 sensitizes melanomas to programmed cell death protein-1 blockade treatment and elicits effective anti-tumor responses. Together, this study demonstrates that targeting the UCP2 pathway is a potent strategy for alleviating the immunosuppressive TME and overcoming the primary resistance of programmed cell death protein-1 blockade.


Subject(s)
Antineoplastic Agents, Immunological/therapeutic use , Melanoma, Experimental/immunology , Skin Neoplasms/immunology , Tumor Microenvironment/immunology , Uncoupling Protein 2/immunology , Animals , Antineoplastic Agents, Immunological/pharmacology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Dendritic Cells/immunology , Drug Resistance, Neoplasm/immunology , Female , Humans , Immunotherapy/methods , Interferon Regulatory Factors/immunology , Interferon Regulatory Factors/metabolism , Melanoma, Experimental/blood supply , Melanoma, Experimental/drug therapy , Melanoma, Experimental/mortality , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology , Skin Neoplasms/blood supply , Skin Neoplasms/drug therapy , Skin Neoplasms/mortality , Survival Analysis , Treatment Outcome , Uncoupling Protein 2/genetics , Uncoupling Protein 2/metabolism
6.
Nat Immunol ; 20(4): 515-516, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30862953

ABSTRACT

In the version of this article initially published, the bars were not aligned with the data points or horizontal axis labels in Fig. 5d, and the labels along each horizontal axis of Fig. 5j-l indicating the presence (+) or absence (-) of doxycycline (Dox) were incorrectly included with the labels below that axis. Also, the right vertical bar above Fig. 7b linking 'P = 0.0001' to the key was incorrect; the correct comparison is αPD-1 versus Dox + αPD-1. Similarly, the right vertical bar above Fig. 7e linking 'P = 0.0002' to the key was incorrect; the correct comparison is αPD-1 versus Rosig + αPD-1. The errors have been corrected in the HTML and PDF versions of the article.

7.
Nature ; 621(7980): 849-856, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37730993

ABSTRACT

Protective immunity against pathogens or cancer is mediated by the activation and clonal expansion of antigen-specific naive T cells into effector T cells. To sustain their rapid proliferation and effector functions, naive T cells switch their quiescent metabolism to an anabolic metabolism through increased levels of aerobic glycolysis, but also through mitochondrial metabolism and oxidative phosphorylation, generating energy and signalling molecules1-3. However, how that metabolic rewiring drives and defines the differentiation of T cells remains unclear. Here we show that proliferating effector CD8+ T cells reductively carboxylate glutamine through the mitochondrial enzyme isocitrate dehydrogenase 2 (IDH2). Notably, deletion of the gene encoding IDH2 does not impair the proliferation of T cells nor their effector function, but promotes the differentiation of memory CD8+ T cells. Accordingly, inhibiting IDH2 during ex vivo manufacturing of chimeric antigen receptor (CAR) T cells induces features of memory T cells and enhances antitumour activity in melanoma, leukaemia and multiple myeloma. Mechanistically, inhibition of IDH2 activates compensating metabolic pathways that cause a disequilibrium in metabolites regulating histone-modifying enzymes, and this maintains chromatin accessibility at genes that are required for the differentiation of memory T cells. These findings show that reductive carboxylation in CD8+ T cells is dispensable for their effector response and proliferation, but that it mainly produces a pattern of metabolites that epigenetically locks CD8+ T cells into a terminal effector differentiation program. Blocking this metabolic route allows the increased formation of memory T cells, which could be exploited to optimize the therapeutic efficacy of CAR T cells.


Subject(s)
CD8-Positive T-Lymphocytes , Lymphocyte Activation , Cell Differentiation/genetics , Citric Acid Cycle , Oxidative Phosphorylation , Immunologic Memory/genetics
8.
Immunity ; 49(6): 987-989, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30566885

ABSTRACT

How macrophages convey extracellular signals by bridging metabolism and functions remains unclear. In this issue of Immunity, Sanin et al. (2018) report that prostaglandin E2 (PGE2) treatment in interleukin-4-activated macrophages suppresses mitochondrial membrane potential to control voltage-regulated genes involved in proliferation and immune responses.


Subject(s)
Dinoprostone , Macrophages , Gene Expression , Membrane Potential, Mitochondrial
10.
Nat Aging ; 3(9): 1057-1066, 2023 09.
Article in English | MEDLINE | ID: mdl-37653255

ABSTRACT

Aging compromises hematopoietic and immune system functions, making older adults especially susceptible to hematopoietic failure, infections and tumor development, and thus representing an important medical target for a broad range of diseases. During aging, hematopoietic stem cells (HSCs) lose their blood reconstitution capability and commit preferentially toward the myeloid lineage (myeloid bias)1,2. These processes are accompanied by an aberrant accumulation of mitochondria in HSCs3. The administration of the mitochondrial modulator urolithin A corrects mitochondrial function in HSCs and completely restores the blood reconstitution capability of 'old' HSCs. Moreover, urolithin A-supplemented food restores lymphoid compartments, boosts HSC function and improves the immune response against viral infection in old mice. Altogether our results demonstrate that boosting mitochondrial recycling reverts the aging phenotype in the hematopoietic and immune systems.


Subject(s)
Aging , Immune System , Animals , Mice , Food, Fortified , Hematopoietic Stem Cells , Mitochondria
11.
Sci Immunol ; 8(87): eadf7579, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37738363

ABSTRACT

Mitophagy, a central process guarding mitochondrial quality, is commonly impaired in human diseases such as Parkinson's disease, but its impact in adaptive immunity remains unclear. The differentiation and survival of memory CD8+ T cells rely on oxidative metabolism, a process that requires robust mitochondrial quality control. Here, we found that Parkinson's disease patients have a reduced frequency of CD8+ memory T cells compared with healthy donors and failed to form memory T cells upon vaccination against COVID-19, highlighting the importance of mitochondrial quality control for memory CD8+ T cell formation. We further uncovered that regulators of mitophagy, including Parkin and NIX, were up-regulated in response to interleukin-15 (IL-15) for supporting memory T cell formation. Mechanistically, Parkin suppressed VDAC1-dependent apoptosis in memory T cells. In contrast, NIX expression in T cells counteracted ferroptosis by preventing metabolic dysfunction resulting from impaired mitophagy. Together, our results indicate that the mitophagy machinery orchestrates survival and metabolic dynamics required for memory T cell formation, as well as highlight a deficit in T cell-mediated antiviral responses in Parkinson's disease patients.


Subject(s)
COVID-19 , Parkinson Disease , Humans , CD8-Positive T-Lymphocytes , Memory T Cells , Mitophagy , Cell Death
12.
Cell Metab ; 34(5): 731-746.e9, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35452600

ABSTRACT

Glycolysis, including both lactate fermentation and pyruvate oxidation, orchestrates CD8+ T cell differentiation. However, how mitochondrial pyruvate metabolism and uptake controlled by the mitochondrial pyruvate carrier (MPC) impact T cell function and fate remains elusive. We found that genetic deletion of MPC drives CD8+ T cell differentiation toward a memory phenotype. Metabolic flexibility induced by MPC inhibition facilitated acetyl-coenzyme-A production by glutamine and fatty acid oxidation that results in enhanced histone acetylation and chromatin accessibility on pro-memory genes. However, in the tumor microenvironment, MPC is essential for sustaining lactate oxidation to support CD8+ T cell antitumor function. We further revealed that chimeric antigen receptor (CAR) T cell manufacturing with an MPC inhibitor imprinted a memory phenotype and demonstrated that infusing MPC inhibitor-conditioned CAR T cells resulted in superior and long-lasting antitumor activity. Altogether, we uncover that mitochondrial pyruvate uptake instructs metabolic flexibility for guiding T cell differentiation and antitumor responses.


Subject(s)
Memory T Cells , Monocarboxylic Acid Transporters , Lactates , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Monocarboxylic Acid Transporters/genetics , Monocarboxylic Acid Transporters/metabolism , Pyruvic Acid/metabolism
13.
Cell Rep ; 41(7): 111639, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36384124

ABSTRACT

T cells dynamically rewire their metabolism during an immune response. We applied single-cell RNA sequencing to CD8+ T cells activated and differentiated in vitro in physiological medium to resolve these metabolic dynamics. We identify a differential time-dependent reliance of activating T cells on the synthesis versus uptake of various non-essential amino acids, which we corroborate with functional assays. We also identify metabolic genes that potentially dictate the outcome of T cell differentiation, by ranking them based on their expression dynamics. Among them, we find asparagine synthetase (Asns), whose expression peaks for effector T cells and decays toward memory formation. Disrupting these expression dynamics by ASNS overexpression promotes an effector phenotype, enhancing the anti-tumor response of adoptively transferred CD8+ T cells in a mouse melanoma model. We thus provide a resource of dynamic expression changes during CD8+ T cell activation and differentiation, and identify ASNS expression dynamics as a modulator of CD8+ T cell differentiation.


Subject(s)
CD8-Positive T-Lymphocytes , Melanoma , Mice , Animals , Single-Cell Analysis , Lymphocyte Activation , Cell Differentiation , Melanoma/metabolism , Disease Models, Animal
14.
Cell Mol Immunol ; 18(7): 1761-1771, 2021 07.
Article in English | MEDLINE | ID: mdl-32055005

ABSTRACT

Memory CD8 T cells can provide long-term protection against tumors, which depends on their enhanced proliferative capacity, self-renewal and unique metabolic rewiring to sustain cellular fitness. Specifically, memory CD8 T cells engage oxidative phosphorylation and fatty acid oxidation to fulfill their metabolic demands. In contrast, tumor-infiltrating lymphocytes (TILs) display severe metabolic defects, which may underlie their functional decline. Here, we show that overexpression of proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), the master regulator of mitochondrial biogenesis (MB), favors CD8 T cell central memory formation rather than resident memory generation. PGC-1α-overexpressing CD8 T cells persist and mediate more robust recall responses to bacterial infection or peptide vaccination. Importantly, CD8 T cells with enhanced PGC-1α expression provide stronger antitumor immunity in a mouse melanoma model. Moreover, TILs overexpressing PGC-1α maintain higher mitochondrial activity and improved expansion when rechallenged in a tumor-free host. Altogether, our findings indicate that enforcing mitochondrial biogenesis promotes CD8 T cell memory formation, metabolic fitness, and antitumor immunity in vivo.


Subject(s)
Cancer Vaccines , Animals , CD8-Positive T-Lymphocytes/metabolism , Mice , Mitochondria/metabolism , Organelle Biogenesis , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Vaccines, Subunit
15.
Nat Metab ; 2(10): 1001-1012, 2020 10.
Article in English | MEDLINE | ID: mdl-32958939

ABSTRACT

Current immunotherapies yield remarkable clinical outcomes by boosting the power of host immunity in cancer cell elimination and viral clearance. However, after prolonged antigen exposure, CD8+ T cells differentiate into a special differentiation state known as T-cell exhaustion, which poses one of the major hurdles to antiviral and antitumor immunity during chronic viral infection and tumour development. Growing evidence indicates that exhausted T cells undergo metabolic insufficiency with altered signalling cascades and epigenetic landscapes, which dampen effector immunity and cause poor responsiveness to immune-checkpoint-blockade therapies. How metabolic stress affects T-cell exhaustion remains unclear; therefore, in this Review, we summarize current knowledge of how T-cell exhaustion occurs, and discuss how metabolic insufficiency and prolonged stress responses may affect signalling cascades and epigenetic reprogramming, thus locking T cells into an exhausted state via specialized differentiation programming.


Subject(s)
Cellular Senescence/genetics , Cellular Senescence/physiology , Epigenesis, Genetic/genetics , T-Lymphocytes/metabolism , T-Lymphocytes/physiology , Animals , Humans
16.
Trends Cancer ; 3(8): 583-592, 2017 08.
Article in English | MEDLINE | ID: mdl-28780935

ABSTRACT

The promising outcomes observed in cancer immunotherapy are evidence that the immune system provides a powerful arsenal for the restriction of tumor outgrowth; however, the immunosuppressive tumor microenvironment (TME) is known to impair antitumor immunity and impede the efficacy of cancer immunotherapies. Regulatory T cells (Tregs), which prevent overt immune responses and autoimmunity, accumulate aberrantly in some types of tumor to suppress antitumor immunity and support the establishment of an immunosuppressive microenvironment. Ablation of Tregs has been shown to not only unleash antitumor immunity and interrupt formation of an immunosuppressive TME, but also lead to severe autoimmune disorders. Therefore, it is essential to develop approaches to specifically target intratumoral Tregs. Herein, we summarize the immunomodulatory functions of Tregs in the TME and discuss how metabolic regulation of Tregs can facilitate intratumoral Treg accumulation.


Subject(s)
Autoimmunity , Immunotherapy/methods , Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Animals , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Humans , Immune Tolerance/drug effects , Immune Tolerance/immunology , Immunotherapy/trends , Mice , Neoplasms/therapy , Signal Transduction/drug effects , Signal Transduction/immunology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Tumor Escape/drug effects , Tumor Escape/immunology , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL