Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.810
Filter
Add more filters

Uruguay Oncology Collection
Publication year range
1.
Nat Immunol ; 23(8): 1236-1245, 2022 08.
Article in English | MEDLINE | ID: mdl-35882933

ABSTRACT

Tissue-resident memory T cells (TRM cells) provide rapid and superior control of localized infections. While the transcription factor Runx3 is a critical regulator of CD8+ T cell tissue residency, its expression is repressed in CD4+ T cells. Here, we show that, as a direct consequence of this Runx3-deficiency, CD4+ TRM cells lacked the transforming growth factor (TGF)-ß-responsive transcriptional network that underpins the tissue residency of epithelial CD8+ TRM cells. While CD4+ TRM cell formation required Runx1, this, along with the modest expression of Runx3 in CD4+ TRM cells, was insufficient to engage the TGF-ß-driven residency program. Ectopic expression of Runx3 in CD4+ T cells incited this TGF-ß-transcriptional network to promote prolonged survival, decreased tissue egress, a microanatomical redistribution towards epithelial layers and enhanced effector functionality. Thus, our results reveal distinct programming of tissue residency in CD8+ and CD4+ TRM cell subsets that is attributable to divergent Runx3 activity.


Subject(s)
Immunologic Memory , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Transforming Growth Factor beta/metabolism
2.
Nat Immunol ; 20(12): 1668-1680, 2019 12.
Article in English | MEDLINE | ID: mdl-31636464

ABSTRACT

Lymph node fibroblastic reticular cells (FRCs) respond to signals from activated T cells by releasing nitric oxide, which inhibits T cell proliferation and restricts the size of the expanding T cell pool. Whether interactions with FRCs also support the function or differentiation of activated CD8+ T cells is not known. Here we report that encounters with FRCs enhanced cytokine production and remodeled chromatin accessibility in newly activated CD8+ T cells via interleukin-6. These epigenetic changes facilitated metabolic reprogramming and amplified the activity of pro-survival pathways through differential transcription factor activity. Accordingly, FRC conditioning significantly enhanced the persistence of virus-specific CD8+ T cells in vivo and augmented their differentiation into tissue-resident memory T cells. Our study demonstrates that FRCs play a role beyond restricting T cell expansion-they can also shape the fate and function of CD8+ T cells.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Fibroblasts/physiology , Lymph Nodes/immunology , Animals , Cell Differentiation , Cell Proliferation , Cell Survival , Cells, Cultured , Cellular Reprogramming , Chromatin Assembly and Disassembly , Cytotoxicity, Immunologic , Epigenesis, Genetic , Gene Expression Regulation , Immunologic Memory , Interleukin-6/genetics , Interleukin-6/metabolism , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism
3.
Mol Cell ; 83(1): 121-138.e7, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36521490

ABSTRACT

Cell cycle (CC) facilitates cell division via robust, cyclical gene expression. Protective immunity requires the expansion of pathogen-responsive cell types, but whether CC confers unique gene expression programs that direct the subsequent immunological response remains unclear. Here, we demonstrate that single macrophages (MFs) adopt different plasticity states in CC, which leads to heterogeneous cytokine-induced polarization, priming, and repolarization programs. Specifically, MF plasticity to interferon gamma (IFNG) is substantially reduced during S-G2/M, whereas interleukin 4 (IL-4) induces S-G2/M-biased gene expression, mediated by CC-biased enhancers. Additionally, IL-4 polarization shifts the CC-phase distribution of MFs toward the G2/M phase, providing a subpopulation-specific mechanism for IL-4-induced, dampened IFNG responsiveness. Finally, we demonstrate CC-dependent MF responses in murine and human disease settings in vivo, including Th2-driven airway inflammation and pulmonary fibrosis, where MFs express an S-G2/M-biased tissue remodeling gene program. Therefore, MF inflammatory and regenerative responses are gated by CC in a cyclical, phase-dependent manner.


Subject(s)
Chromatin , Interleukin-4 , Humans , Mice , Animals , Interleukin-4/genetics , Interleukin-4/pharmacology , Chromatin/genetics , Chromatin/metabolism , Macrophages/metabolism , Interferon-gamma/genetics , Interferon-gamma/pharmacology , Cell Cycle/genetics , Cell Division
4.
Nat Rev Genet ; 24(1): 4-20, 2023 01.
Article in English | MEDLINE | ID: mdl-36028773

ABSTRACT

Circadian rhythms and sleep are fundamental biological processes integral to human health. Their disruption is associated with detrimental physiological consequences, including cognitive, metabolic, cardiovascular and immunological dysfunctions. Yet many of the molecular underpinnings of sleep regulation in health and disease have remained elusive. Given the moderate heritability of circadian and sleep traits, genetics offers an opportunity that complements insights from model organism studies to advance our fundamental molecular understanding of human circadian and sleep physiology and linked chronic disease biology. Here, we review recent discoveries of the genetics of circadian and sleep physiology and disorders with a focus on those that reveal causal contributions to complex diseases.


Subject(s)
Circadian Rhythm , Sleep , Humans , Circadian Rhythm/genetics , Sleep/genetics , Phenotype
5.
Nature ; 623(7987): 608-615, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37938768

ABSTRACT

Cell therapies have yielded durable clinical benefits for patients with cancer, but the risks associated with the development of therapies from manipulated human cells are understudied. For example, we lack a comprehensive understanding of the mechanisms of toxicities observed in patients receiving T cell therapies, including recent reports of encephalitis caused by reactivation of human herpesvirus 6 (HHV-6)1. Here, through petabase-scale viral genomics mining, we examine the landscape of human latent viral reactivation and demonstrate that HHV-6B can become reactivated in cultures of human CD4+ T cells. Using single-cell sequencing, we identify a rare population of HHV-6 'super-expressors' (about 1 in 300-10,000 cells) that possess high viral transcriptional activity, among research-grade allogeneic chimeric antigen receptor (CAR) T cells. By analysing single-cell sequencing data from patients receiving cell therapy products that are approved by the US Food and Drug Administration2 or are in clinical studies3-5, we identify the presence of HHV-6-super-expressor CAR T cells in patients in vivo. Together, the findings of our study demonstrate the utility of comprehensive genomics analyses in implicating cell therapy products as a potential source contributing to the lytic HHV-6 infection that has been reported in clinical trials1,6-8 and may influence the design and production of autologous and allogeneic cell therapies.


Subject(s)
CD4-Positive T-Lymphocytes , Herpesvirus 6, Human , Immunotherapy, Adoptive , Receptors, Chimeric Antigen , Virus Activation , Virus Latency , Humans , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/virology , Clinical Trials as Topic , Gene Expression Regulation, Viral , Genomics , Herpesvirus 6, Human/genetics , Herpesvirus 6, Human/isolation & purification , Herpesvirus 6, Human/physiology , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/methods , Infectious Encephalitis/complications , Infectious Encephalitis/virology , Receptors, Chimeric Antigen/immunology , Roseolovirus Infections/complications , Roseolovirus Infections/virology , Single-Cell Gene Expression Analysis , Viral Load
6.
Nature ; 603(7903): 803-814, 2022 03.
Article in English | MEDLINE | ID: mdl-35354997

ABSTRACT

The vast majority of commodity plastics do not degrade and therefore they permanently pollute the environment. At present, less than 20% of post-consumer plastic waste in developed countries is recycled, predominately for energy recovery or repurposing as lower-value materials by mechanical recycling. Chemical recycling offers an opportunity to revert plastics back to monomers for repolymerization to virgin materials without altering the properties of the material or the economic value of the polymer. For plastic waste that is either cost prohibitive or infeasible to mechanically or chemically recycle, the nascent field of chemical upcycling promises to use chemical or engineering approaches to place plastic waste at the beginning of a new value chain. Here state-of-the-art methods are highlighted for upcycling plastic waste into value-added performance materials, fine chemicals and specialty polymers. By identifying common conceptual approaches, we critically discuss how the advantages and challenges of each approach contribute to the goal of realizing a sustainable plastics economy.

7.
N Engl J Med ; 390(11): 973-983, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38477985

ABSTRACT

BACKGROUND: Colorectal cancer is the third most diagnosed cancer in adults in the United States. Early detection could prevent more than 90% of colorectal cancer-related deaths, yet more than one third of the screening-eligible population is not up to date with screening despite multiple available tests. A blood-based test has the potential to improve screening adherence, detect colorectal cancer earlier, and reduce colorectal cancer-related mortality. METHODS: We assessed the performance characteristics of a cell-free DNA (cfDNA) blood-based test in a population eligible for colorectal cancer screening. The coprimary outcomes were sensitivity for colorectal cancer and specificity for advanced neoplasia (colorectal cancer or advanced precancerous lesions) relative to screening colonoscopy. The secondary outcome was sensitivity to detect advanced precancerous lesions. RESULTS: The clinical validation cohort included 10,258 persons, 7861 of whom met eligibility criteria and were evaluable. A total of 83.1% of the participants with colorectal cancer detected by colonoscopy had a positive cfDNA test and 16.9% had a negative test, which indicates a sensitivity of the cfDNA test for detection of colorectal cancer of 83.1% (95% confidence interval [CI], 72.2 to 90.3). Sensitivity for stage I, II, or III colorectal cancer was 87.5% (95% CI, 75.3 to 94.1), and sensitivity for advanced precancerous lesions was 13.2% (95% CI, 11.3 to 15.3). A total of 89.6% of the participants without any advanced colorectal neoplasia (colorectal cancer or advanced precancerous lesions) identified on colonoscopy had a negative cfDNA blood-based test, whereas 10.4% had a positive cfDNA blood-based test, which indicates a specificity for any advanced neoplasia of 89.6% (95% CI, 88.8 to 90.3). Specificity for negative colonoscopy (no colorectal cancer, advanced precancerous lesions, or nonadvanced precancerous lesions) was 89.9% (95% CI, 89.0 to 90.7). CONCLUSIONS: In an average-risk screening population, this cfDNA blood-based test had 83% sensitivity for colorectal cancer, 90% specificity for advanced neoplasia, and 13% sensitivity for advanced precancerous lesions. (Funded by Guardant Health; ECLIPSE ClinicalTrials.gov number, NCT04136002.).


Subject(s)
Cell-Free Nucleic Acids , Colorectal Neoplasms , Early Detection of Cancer , Mass Screening , Precancerous Conditions , Adult , Humans , Cell-Free Nucleic Acids/blood , Colonoscopy , Colorectal Neoplasms/blood , Colorectal Neoplasms/diagnosis , Early Detection of Cancer/methods , Precancerous Conditions/blood , Precancerous Conditions/diagnosis , Mass Screening/methods , Sensitivity and Specificity
8.
Nature ; 590(7844): 151-156, 2021 02.
Article in English | MEDLINE | ID: mdl-33442055

ABSTRACT

Up to 20% of people worldwide develop gastrointestinal symptoms following a meal1, leading to decreased quality of life, substantial morbidity and high medical costs. Although the interest of both the scientific and lay communities in this issue has increased markedly in recent years, with the worldwide introduction of gluten-free and other diets, the underlying mechanisms of food-induced abdominal complaints remain largely unknown. Here we show that a bacterial infection and bacterial toxins can trigger an immune response that leads to the production of dietary-antigen-specific IgE antibodies in mice, which are limited to the intestine. Following subsequent oral ingestion of the respective dietary antigen, an IgE- and mast-cell-dependent mechanism induced increased visceral pain. This aberrant pain signalling resulted from histamine receptor H1-mediated sensitization of visceral afferents. Moreover, injection of food antigens (gluten, wheat, soy and milk) into the rectosigmoid mucosa of patients with irritable bowel syndrome induced local oedema and mast cell activation. Our results identify and characterize a peripheral mechanism that underlies food-induced abdominal pain, thereby creating new possibilities for the treatment of irritable bowel syndrome and related abdominal pain disorders.


Subject(s)
Abdominal Pain/immunology , Abdominal Pain/pathology , Allergens/immunology , Food Hypersensitivity/immunology , Food/adverse effects , Intestines/immunology , Irritable Bowel Syndrome/immunology , Abdominal Pain/etiology , Abdominal Pain/microbiology , Adult , Animals , Citrobacter rodentium/immunology , Diarrhea/immunology , Diarrhea/microbiology , Diarrhea/pathology , Enterobacteriaceae Infections/complications , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Female , Food Hypersensitivity/complications , Food Hypersensitivity/microbiology , Food Hypersensitivity/pathology , Glutens/immunology , Humans , Immunoglobulin E/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Intestines/microbiology , Intestines/pathology , Irritable Bowel Syndrome/etiology , Irritable Bowel Syndrome/microbiology , Irritable Bowel Syndrome/pathology , Male , Mast Cells/immunology , Mice , Mice, Inbred BALB C , Middle Aged , Milk/immunology , Ovalbumin/immunology , Quality of Life , Receptors, Histamine H1/metabolism , Soybean Proteins/immunology , Triticum/immunology
9.
Proc Natl Acad Sci U S A ; 121(9): e2214756121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38394243

ABSTRACT

Sleep, circadian rhythms, and mental health are reciprocally interlinked. Disruption to the quality, continuity, and timing of sleep can precipitate or exacerbate psychiatric symptoms in susceptible individuals, while treatments that target sleep-circadian disturbances can alleviate psychopathology. Conversely, psychiatric symptoms can reciprocally exacerbate poor sleep and disrupt clock-controlled processes. Despite progress in elucidating underlying mechanisms, a cohesive approach that integrates the dynamic interactions between psychiatric disorder with both sleep and circadian processes is lacking. This review synthesizes recent evidence for sleep-circadian dysfunction as a transdiagnostic contributor to a range of psychiatric disorders, with an emphasis on biological mechanisms. We highlight observations from adolescent and young adults, who are at greatest risk of developing mental disorders, and for whom early detection and intervention promise the greatest benefit. In particular, we aim to a) integrate sleep and circadian factors implicated in the pathophysiology and treatment of mood, anxiety, and psychosis spectrum disorders, with a transdiagnostic perspective; b) highlight the need to reframe existing knowledge and adopt an integrated approach which recognizes the interaction between sleep and circadian factors; and c) identify important gaps and opportunities for further research.


Subject(s)
Mental Disorders , Sleep Wake Disorders , Young Adult , Adolescent , Humans , Mental Disorders/etiology , Mental Disorders/therapy , Sleep/physiology , Circadian Rhythm/physiology , Mental Health , Mood Disorders
10.
Proc Natl Acad Sci U S A ; 121(12): e2308433121, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38437528

ABSTRACT

The green-up of vegetation in spring brings a pulse of food resources that many animals track during migration. However, green-up phenology is changing with climate change, posing an immense challenge for species that time their migrations to coincide with these resource pulses. We evaluated changes in green-up phenology from 2002 to 2021 in relation to the migrations of 150 Western-Hemisphere bird species using eBird citizen science data. We found that green-up phenology has changed within bird migration routes, and yet the migrations of most species align more closely with long-term averages of green-up than with current conditions. Changing green-up strongly influenced phenological mismatches, especially for longer-distance migrants. These results reveal that bird migration may have limited flexibility to adjust to changing vegetation phenology and emphasize the mounting challenge migratory animals face in following en route resources in a changing climate.


Subject(s)
Birds , Citizen Science , Animals , Climate Change , Heart Rate , Seasons
11.
N Engl J Med ; 389(18): 1660-1671, 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37634148

ABSTRACT

BACKGROUND: Catheter-based pulmonary vein isolation is an effective treatment for paroxysmal atrial fibrillation. Pulsed field ablation, which delivers microsecond high-voltage electrical fields, may limit damage to tissues outside the myocardium. The efficacy and safety of pulsed field ablation as compared with conventional thermal ablation are not known. METHODS: In this randomized, single-blind, noninferiority trial, we assigned patients with drug-refractory paroxysmal atrial fibrillation in a 1:1 ratio to undergo pulsed field ablation or conventional radiofrequency or cryoballoon ablation. The primary efficacy end point was freedom from a composite of initial procedural failure, documented atrial tachyarrhythmia after a 3-month blanking period, antiarrhythmic drug use, cardioversion, or repeat ablation. The primary safety end point included acute and chronic device- and procedure-related serious adverse events. RESULTS: A total of 305 patients were assigned to undergo pulsed field ablation, and 302 were assigned to undergo thermal ablation. At 1 year, the primary efficacy end point was met (i.e., no events occurred) in 204 patients (estimated probability, 73.3%) who underwent pulsed field ablation and 194 patients (estimated probability, 71.3%) who underwent thermal ablation (between-group difference, 2.0 percentage points; 95% Bayesian credible interval, -5.2 to 9.2; posterior probability of noninferiority, >0.999). Primary safety end-point events occurred in 6 patients (estimated incidence, 2.1%) who underwent pulsed field ablation and 4 patients (estimated incidence, 1.5%) who underwent thermal ablation (between-group difference, 0.6 percentage points; 95% Bayesian credible interval, -1.5 to 2.8; posterior probability of noninferiority, >0.999). CONCLUSIONS: Among patients with paroxysmal atrial fibrillation receiving a catheter-based therapy, pulsed field ablation was noninferior to conventional thermal ablation with respect to freedom from a composite of initial procedural failure, documented atrial tachyarrhythmia after a 3-month blanking period, antiarrhythmic drug use, cardioversion, or repeat ablation and with respect to device- and procedure-related serious adverse events at 1 year. (Funded by Farapulse-Boston Scientific; ADVENT ClinicalTrials.gov number, NCT04612244.).


Subject(s)
Atrial Fibrillation , Catheter Ablation , Pulmonary Veins , Humans , Atrial Fibrillation/classification , Atrial Fibrillation/surgery , Bayes Theorem , Catheter Ablation/adverse effects , Catheter Ablation/methods , Pulmonary Veins/surgery , Recurrence , Single-Blind Method , Tachycardia/etiology , Treatment Outcome
12.
Nat Immunol ; 15(10): 973-81, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25151489

ABSTRACT

Fibroblastic reticular cells (FRCs) are known to inhabit T cell-rich areas of lymphoid organs, where they function to facilitate interactions between T cells and dendritic cells. However, in vivo manipulation of FRCs has been limited by a dearth of genetic tools that target this lineage. Here, using a mouse model to conditionally ablate FRCs, we demonstrated their indispensable role in antiviral T cell responses. Unexpectedly, loss of FRCs also attenuated humoral immunity due to impaired B cell viability and follicular organization. Follicle-resident FRCs established a favorable niche for B lymphocytes via production of the cytokine BAFF. Thus, our study indicates that adaptive immunity requires an intact FRC network and identifies a subset of FRCs that control B cell homeostasis and follicle identity.


Subject(s)
B-Lymphocytes/immunology , Fibroblasts/immunology , Homeostasis/immunology , T-Lymphocytes/immunology , Animals , B-Cell Activating Factor/immunology , B-Cell Activating Factor/metabolism , B-Lymphocytes/metabolism , Cell Movement/immunology , Cell Survival/immunology , Cells, Cultured , Dendritic Cells/immunology , Dendritic Cells/metabolism , Fibroblasts/metabolism , Flow Cytometry , Immunity, Humoral/immunology , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Lymph Nodes/immunology , Lymph Nodes/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Confocal , T-Lymphocytes/metabolism
13.
Nat Immunol ; 15(2): 152-60, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24317040

ABSTRACT

High-density lipoprotein (HDL) mediates reverse cholesterol transport and is known to be protective against atherosclerosis. In addition, HDL has potent anti-inflammatory properties that may be critical for protection against other inflammatory diseases. The molecular mechanisms of how HDL can modulate inflammation, particularly in immune cells such as macrophages, remain poorly understood. Here we identify the transcriptional regulator ATF3, as an HDL-inducible target gene in macrophages that downregulates the expression of Toll-like receptor (TLR)-induced proinflammatory cytokines. The protective effects of HDL against TLR-induced inflammation were fully dependent on ATF3 in vitro and in vivo. Our findings may explain the broad anti-inflammatory and metabolic actions of HDL and provide the basis for predicting the success of new HDL-based therapies.


Subject(s)
Activating Transcription Factor 3/metabolism , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Atherosclerosis/therapy , Cholesterol/metabolism , Inflammation/therapy , Lipoproteins, HDL/therapeutic use , Macrophages/drug effects , Activating Transcription Factor 3/genetics , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Cells, Cultured , Chromatin Immunoprecipitation , Cytokines/metabolism , Female , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Lipoproteins, HDL/pharmacology , Macrophage Activation/drug effects , Macrophages/immunology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Systems Biology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology
14.
Circ Res ; 134(6): 810-832, 2024 03 15.
Article in English | MEDLINE | ID: mdl-38484034

ABSTRACT

Hypertension is extremely common, affecting approximately 1 in every 2 adults globally. Chronic hypertension is the leading modifiable risk factor for cardiovascular disease and premature mortality worldwide. Despite considerable efforts to define mechanisms that underlie hypertension, a potentially major component of the disease, the role of circadian biology has been relatively overlooked in both preclinical models and humans. Although the presence of daily and circadian patterns has been observed from the level of the genome to the whole organism, the functional and structural impact of biological rhythms, including mechanisms such as circadian misalignment, remains relatively poorly defined. Here, we review the impact of daily rhythms and circadian systems in regulating blood pressure and the onset, progression, and consequences of hypertension. There is an emphasis on the impact of circadian biology in relation to vascular disease and end-organ effects that, individually or in combination, contribute to complex phenotypes such as cognitive decline and the loss of cardiac and brain health. Despite effective treatment options for some individuals, control of blood pressure remains inadequate in a substantial portion of the hypertensive population. Greater insight into circadian biology may form a foundation for novel and more widely effective molecular therapies or interventions to help in the prevention, treatment, and management of hypertension and its related pathophysiology.


Subject(s)
Cardiovascular Diseases , Hypertension , Adult , Humans , Blood Pressure/physiology , Circadian Rhythm , Heart
15.
Proc Natl Acad Sci U S A ; 120(41): e2306020120, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37782795

ABSTRACT

Variation in human immune response to the same bacterial or viral pathogen is well established in the literature. Variation in immune response to microbial challenge has also been observed within the human oral cavity. Our recent study focused on characterizing observed variations in microbially induced gingival inflammation-resulting in three distinct clinical Inflammatory Responder Types (IRTs): High-IRT, Low-IRT, and Slow-IRT. Here, we applied a high-resolution temporal multiomic analysis during microbially induced inflammation in order to characterize the effects of localized oral inflammation on distant healthy tissues in young healthy adults. Our results highlight a nonlocalized subclinical effect with alterations in proinflammatory host mediators and an ecological shift toward dysbiosis within the subgingival microbiome in an IRT-dependent manner-despite maintained oral hygiene. Our results provide mechanistic insight into how healthy tissues within humans are influenced by distant localized inflammation and may ultimately become susceptible to disease.


Subject(s)
Gingivitis , Microbiota , Adult , Humans , Gingivitis/microbiology , Inflammation , Bacteria
16.
Lancet ; 403(10438): 1766-1778, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704172

ABSTRACT

BACKGROUND: Amblyopia, the most common visual impairment of childhood, is a public health concern. An extended period of optical treatment before patching is recommended by the clinical guidelines of several countries. The aim of this study was to compare an intensive patching regimen, with and without extended optical treatment (EOT), in a randomised controlled trial. METHODS: EuPatch was a randomised controlled trial conducted in 30 hospitals in the UK, Greece, Austria, Germany, and Switzerland. Children aged 3-8 years with newly detected, untreated amblyopia (defined as an interocular difference ≥0·30 logarithm of the minimum angle of resolution [logMAR] best corrected visual acuity [BCVA]) due to anisometropia, strabismus, or both were eligible. Participants were randomly assigned (1:1) via a computer-generated sequence to either the EOT group (18 weeks of glasses use before patching) or to the early patching group (3 weeks of glasses use before patching), stratified for type and severity of amblyopia. All participants were initially prescribed an intensive patching regimen (10 h/day, 6 days per week), supplemented with motivational materials. The patching period was up to 24 weeks. Participants, parents or guardians, assessors, and the trial statistician were not masked to treatment allocation. The primary outcome was successful treatment (ie, ≤0·20 logMAR interocular difference in BCVA) after 12 weeks of patching. Two primary analyses were conducted: the main analysis included all participants, including those who dropped out, but excluded those who did not provide outcome data at week 12 and remained on the study; the other analysis imputed this missing data. All eligible and randomly assigned participants were assessed for adverse events. This study is registered with the International Standard Randomised Controlled Trial Number registry (ISRCTN51712593) and is no longer recruiting. FINDINGS: Between June 20, 2013, and March 12, 2020, after exclusion of eight participants found ineligible after detailed screening, we randomly assigned 334 participants (170 to the EOT group and 164 to the early patching group), including 188 (56%) boys, 146 (44%) girls, and two (1%) participants whose sex was not recorded. 317 participants (158 in the EOT group and 159 in the early patching group) were analysed for the primary outcome without imputation of missing data (median follow-up time 42 weeks [IQR 42] in the EOT group vs 27 weeks [27] in the early patching group). 24 (14%) of 170 participants in the EOT group and ten (6%) of 164 in the early patching group were excluded or dropped out of the study, mostly due to loss to follow-up and withdrawal of consent; ten (6%) in the EOT group and three (2%) in the early patching group missed the 12 week visit but remained on the study. A higher proportion of participants in the early patching group had successful treatment (107 [67%] of 159) than those in the EOT group (86 [54%] of 158; 13% difference; p=0·019) after 12 weeks of patching. No serious adverse events related to the interventions occurred. INTERPRETATION: The results from this trial indicate that early patching is more effective than EOT for the treatment of most children with amblyopia. Our findings also provide data for the personalisation of amblyopia treatments. FUNDING: Action Medical Research, NIHR Clinical Research Network, and Ulverscroft Foundation.


Subject(s)
Amblyopia , Eyeglasses , Sensory Deprivation , Visual Acuity , Humans , Amblyopia/therapy , Child, Preschool , Female , Male , Child , Treatment Outcome , Europe
17.
Gastroenterology ; 167(2): 231-249, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38431204

ABSTRACT

Ferroptosis is a form of nonapoptotic cell death that involves iron-dependent phospholipid peroxidation induced by accumulation of reactive oxygen species, and results in plasma membrane damage and the release of damage-associated molecular patterns. Ferroptosis has been implicated in aging and immunity, as well as disease states including intestinal and liver conditions and cancer. To date, several ferroptosis-associated genes and pathways have been implicated in liver disease. Although ferroptotic cell death is associated with dysfunction of the intestinal epithelium, the underlying molecular basis is poorly understood. As the mechanisms regulating ferroptosis become further elucidated, there is clear potential to use ferroptosis to achieve therapeutic benefit.


Subject(s)
Ferroptosis , Gastrointestinal Diseases , Reactive Oxygen Species , Humans , Gastrointestinal Diseases/metabolism , Gastrointestinal Diseases/pathology , Gastrointestinal Diseases/physiopathology , Reactive Oxygen Species/metabolism , Animals , Iron/metabolism , Signal Transduction , Lipid Peroxidation
18.
Gastroenterology ; 166(4): 690-703, 2024 04.
Article in English | MEDLINE | ID: mdl-38158089

ABSTRACT

BACKGROUND & AIMS: Gastrointestinal angiodysplasias are vascular anomalies that may result in transfusion-dependent anemia despite endoscopic therapy. An individual patient data meta-analysis of cohort studies suggests that octreotide decreases rebleeding rates, but component studies possessed a high risk of bias. We investigated the efficacy of octreotide in reducing the transfusion requirements of patients with angiodysplasia-related anemia in a clinical trial setting. METHODS: The study was designed as a multicenter, open-label, randomized controlled trial. Patients with angiodysplasia bleeding were required to have had at least 4 red blood cell (RBC) units or parental iron infusions, or both, in the year preceding randomization. Patients were allocated (1:1) to 40-mg octreotide long-acting release intramuscular every 28 days or standard of care, including endoscopic therapy. The treatment duration was 1 year. The primary outcome was the mean difference in the number of transfusion units (RBC + parental iron) between the octreotide and standard of care groups. Patients who received at least 1 octreotide injection or followed standard of care for at least 1 month were included in the intention-to-treat analyses. Analyses of covariance were used to adjust for baseline transfusion requirements and incomplete follow-up. RESULTS: We enrolled 62 patients (mean age, 72 years; 32 men) from 17 Dutch hospitals in the octreotide (n = 31) and standard of care (n = 31) groups. Patients required a mean number of 20.3 (standard deviation, 15.6) transfusion units and 2.4 (standard deviation, 2.0) endoscopic procedures in the year before enrollment. The total number of transfusions was lower with octreotide (11.0; 95% confidence interval [CI], 5.5-16.5) compared with standard of care (21.2; 95% CI, 15.7-26.7). Octreotide reduced the mean number of transfusion units by 10.2 (95% CI, 2.4-18.1; P = .012). Octreotide reduced the annual volume of endoscopic procedures by 0.9 (95% CI, 0.3-1.5). CONCLUSIONS: Octreotide effectively reduces transfusion requirements and the need for endoscopic therapy in patients with angiodysplasia-related anemia. CLINICALTRIALS: gov, NCT02384122.


Subject(s)
Anemia , Angiodysplasia , Colonic Diseases , Aged , Humans , Male , Anemia/drug therapy , Anemia/etiology , Angiodysplasia/complications , Angiodysplasia/diagnosis , Angiodysplasia/therapy , Colonic Diseases/drug therapy , Gastrointestinal Hemorrhage/diagnosis , Gastrointestinal Hemorrhage/drug therapy , Gastrointestinal Hemorrhage/etiology , Iron , Multicenter Studies as Topic , Octreotide/therapeutic use , Randomized Controlled Trials as Topic , Standard of Care , Female
19.
Nat Immunol ; 14(6): 574-83, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23584070

ABSTRACT

Chronic infection is difficult to overcome because of exhaustion or depletion of cytotoxic effector CD8(+) T cells (cytotoxic T lymphoytes (CTLs)). Here we report that signaling via Toll-like receptors (TLRs) induced intrahepatic aggregates of myeloid cells that enabled the population expansion of CTLs (iMATEs: 'intrahepatic myeloid-cell aggregates for T cell population expansion') without causing immunopathology. In the liver, CTL proliferation was restricted to iMATEs that were composed of inflammatory monocyte-derived CD11b(+) cells. Signaling via tumor-necrosis factor (TNF) caused iMATE formation that facilitated costimulation dependent on the receptor OX40 for expansion of the CTL population. The iMATEs arose during acute viral infection but were absent during chronic viral infection, yet they were still induced by TLR signaling. Such hepatic expansion of the CTL population controlled chronic viral infection of the liver after vaccination with DNA. Thus, iMATEs are dynamic structures that overcome regulatory cues that limit the population expansion of CTLs during chronic infection and can be used in new therapeutic vaccination strategies.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cell Proliferation , Liver Diseases/immunology , Lymphocytic Choriomeningitis/immunology , Myeloid Cells/immunology , T-Lymphocytes, Cytotoxic/immunology , Animals , Animals, Newborn , CD11b Antigen/immunology , CD11b Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , Chronic Disease , Flow Cytometry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Host-Pathogen Interactions/immunology , Immunotherapy , Liver/immunology , Liver/metabolism , Liver/virology , Liver Diseases/therapy , Liver Diseases/virology , Lymphocytic Choriomeningitis/therapy , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Confocal , Myeloid Cells/metabolism , Receptors, OX40/immunology , Receptors, OX40/metabolism , Signal Transduction/immunology , T-Lymphocytes, Cytotoxic/metabolism , Toll-Like Receptor 9/immunology , Toll-Like Receptor 9/metabolism
20.
Immunity ; 44(5): 955-72, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27192563

ABSTRACT

Immune responses need to be controlled for optimal protective immunity and tolerance. Coinhibitory pathways in the B7-CD28 family provide critical inhibitory signals that regulate immune homeostasis and defense and protect tissue integrity. These coinhibitory signals limit the strength and duration of immune responses, thereby curbing immune-mediated tissue damage, regulating resolution of inflammation, and maintaining tolerance to prevent autoimmunity. Tumors and microbes that cause chronic infections can exploit these coinhibitory pathways to establish an immunosuppressive microenvironment, hindering their eradication. Advances in understanding T cell coinhibitory pathways have stimulated a new era of immunotherapy with effective drugs to treat cancer, autoimmune and infectious diseases, and transplant rejection. In this review we discuss the current knowledge of the mechanisms underlying the coinhibitory functions of pathways in the B7-CD28 family, the diverse functional consequences of these inhibitory signals on immune responses, and the overlapping and unique functions of these key immunoregulatory pathways.


Subject(s)
Autoimmune Diseases/therapy , B7 Antigens/metabolism , CD28 Antigens/metabolism , Immunotherapy/methods , Infections/therapy , Neoplasms/therapy , T-Lymphocytes/immunology , Animals , Antibodies, Monoclonal/therapeutic use , Autoimmune Diseases/immunology , B7 Antigens/immunology , CD28 Antigens/immunology , Humans , Immune Tolerance , Immunosuppression Therapy , Immunotherapy/trends , Infections/immunology , Lymphocyte Activation , Neoplasms/immunology , Receptor Cross-Talk , Signal Transduction , T-Lymphocytes/transplantation
SELECTION OF CITATIONS
SEARCH DETAIL