Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 119
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Appl Biomech ; 40(2): 122-128, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37963452

ABSTRACT

Multiple sclerosis is a neurodegenerative disease that causes balance deficits, even in early stages. Evidence suggests that people with multiple sclerosis (PwMS) rely more on vision to maintain balance, and challenging balance with optical flow perturbations may be a practical screening for balance deficits. Whether these perturbations affect standing balance in PwMS is unknown. Therefore, the purpose of this study was to examine how optical flow perturbations affect standing balance in PwMS. We hypothesized that perturbations would cause higher variability in PwMS compared with matched controls during standing and that standing balance would be more susceptible to anterior-posterior (A-P) perturbations than medial-lateral (M-L) perturbations. Thirteen PwMS and 13 controls stood under 3 conditions: unperturbed, M-L perturbation, and A-P perturbations. A-P perturbations caused significantly higher A-P trunk sway variability in PwMS than controls, although both groups had similar center-of-pressure variability. Both perturbations increased variability in A-P trunk sway and center of pressure. Trunk variability data supported the hypothesis that PwMS were more susceptible to optical flow perturbations than controls. However, the hypothesis that A-P perturbations would affect balance more than M-L perturbations was partially supported. These results suggest potential for optical flow perturbations to identify balance deficits in PwMS.


Subject(s)
Multiple Sclerosis , Neurodegenerative Diseases , Optic Flow , Humans , Postural Balance , Standing Position
2.
Eur J Appl Physiol ; 123(11): 2525-2535, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37326876

ABSTRACT

PURPOSE: To determine associations between immediate and delayed response of serum cartilage oligomeric matrix protein (sCOMP) to loading (i.e., 3000 walking steps) and femoral cartilage interlimb T1ρ relaxation times in individual's post-anterior cruciate ligament reconstruction (ACLR). METHODS: This cross-sectional study included 20 individuals 6-12 months following primary ACLR (65% female, 20.5 ± 4.0 years old, 24.9 ± 3.0 kg/m2, 7.3 ± 1.5 months post-ACLR). Serum samples were collected prior to, immediately following, and 3.5 h following walking 3000 steps on a treadmill at habitual walking speed. sCOMP concentrations were processed using enzyme-linked immunosorbent assays. Immediate and delayed absolute sCOMP responses to loading were evaluated immediately and 3.5 h post-walking, respectively. Participants underwent bilateral magnetic resonance imaging with T1ρ sequences to calculate resting femoral cartilage interlimb T1ρ relaxation time ratios between limbs (i.e., ACLR/Uninjured limb). Linear regression models were fitted to determine associations between sCOMP response to loading and femoral cartilage T1ρ outcomes controlling for pre-loading sCOMP concentrations. RESULTS: Greater increases in delayed sCOMP response to loading were associated with greater lateral (∆R2 = 0.29, p = 0.02) but not medial (∆R2 < 0.01, p = 0.99) femoral cartilage interlimb T1ρ ratios. Associations between immediate sCOMP response to loading with femoral cartilage interlimb T1ρ ratios were weak and non-significant (∆R2 range = 0.02-0.09, p range = 0.21-0.58). CONCLUSION: Greater delayed sCOMP response to loading, a biomarker of cartilage breakdown, is associated with worse lateral femoral cartilage composition in the ACLR limb compared to the uninjured limb. Delayed sCOMP response to loading may be a more indicative metabolic indicator linked to deleterious changes in composition than immediate sCOMP response.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Cartilage, Articular , Adolescent , Female , Humans , Male , Young Adult , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Reconstruction/methods , Cartilage Oligomeric Matrix Protein , Cross-Sectional Studies , Knee Joint , Magnetic Resonance Imaging/methods
3.
Gerontology ; 68(3): 241-251, 2022.
Article in English | MEDLINE | ID: mdl-34274923

ABSTRACT

Older adults walk slower and with a higher metabolic energy expenditure than younger adults. In this review, we explore the hypothesis that age-related declines in Achilles tendon stiffness increase the metabolic cost of walking due to less economical calf muscle contractions and increased proximal joint work. This viewpoint may motivate interventions to restore ankle muscle-tendon stiffness, improve walking mechanics, and reduce metabolic cost in older adults.


Subject(s)
Achilles Tendon , Achilles Tendon/physiology , Aged , Ankle/physiology , Ankle Joint/physiology , Biomechanical Phenomena/physiology , Gait/physiology , Humans , Muscle, Skeletal/physiology , Walking/physiology
4.
J Neuroeng Rehabil ; 19(1): 86, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35945600

ABSTRACT

BACKGROUND: Improving the prediction ability of a human-machine interface (HMI) is critical to accomplish a bio-inspired or model-based control strategy for rehabilitation interventions, which are of increased interest to assist limb function post neurological injuries. A fundamental role of the HMI is to accurately predict human intent by mapping signals from a mechanical sensor or surface electromyography (sEMG) sensor. These sensors are limited to measuring the resulting limb force or movement or the neural signal evoking the force. As the intermediate mapping in the HMI also depends on muscle contractility, a motivation exists to include architectural features of the muscle as surrogates of dynamic muscle movement, thus further improving the HMI's prediction accuracy. OBJECTIVE: The purpose of this study is to investigate a non-invasive sEMG and ultrasound (US) imaging-driven Hill-type neuromuscular model (HNM) for net ankle joint plantarflexion moment prediction. We hypothesize that the fusion of signals from sEMG and US imaging results in a more accurate net plantarflexion moment prediction than sole sEMG or US imaging. METHODS: Ten young non-disabled participants walked on a treadmill at speeds of 0.50, 0.75, 1.00, 1.25, and 1.50 m/s. The proposed HNM consists of two muscle-tendon units. The muscle activation for each unit was calculated as a weighted summation of the normalized sEMG signal and normalized muscle thickness signal from US imaging. The HNM calibration was performed under both single-speed mode and inter-speed mode, and then the calibrated HNM was validated across all walking speeds. RESULTS: On average, the normalized moment prediction root mean square error was reduced by 14.58 % ([Formula: see text]) and 36.79 % ([Formula: see text]) with the proposed HNM when compared to sEMG-driven and US imaging-driven HNMs, respectively. Also, the calibrated models with data from the inter-speed mode were more robust than those from single-speed modes for the moment prediction. CONCLUSIONS: The proposed sEMG-US imaging-driven HNM can significantly improve the net plantarflexion moment prediction accuracy across multiple walking speeds. The findings imply that the proposed HNM can be potentially used in bio-inspired control strategies for rehabilitative devices due to its superior prediction.


Subject(s)
Muscle, Skeletal , Walking Speed , Ankle Joint/physiology , Electromyography/methods , Humans , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/physiology , Walking/physiology
5.
J Appl Biomech ; 38(5): 328-335, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36007878

ABSTRACT

Insufficient quadriceps force production and altered knee joint biomechanics after anterior cruciate ligament reconstruction (ACLR) may contribute to a heightened risk of osteoarthritis. Quadriceps muscle lengthening dynamics affect force production and knee joint loading; however, no study to our knowledge has quantified in vivo quadriceps dynamics during walking in individuals with ACLR or examined correlations with joint biomechanics. Our purpose was to quantify bilateral vastus lateralis (VL) fascicle length change and the association thereof with gait biomechanics during weight acceptance in individuals with ACLR. The authors hypothesized that ACLR limbs would exhibit more fascicle lengthening than contralateral limbs. The authors also hypothesized that ACLR limbs would exhibit positive correlations between VL fascicle lengthening and knee joint biomechanics during weight acceptance in walking. The authors quantified VL contractile dynamics via cine B-mode ultrasound imaging in 18 individuals with ACLR walking on an instrumented treadmill. In partial support of our hypothesis, ACLR limb VL fascicles activated without length change on average during weight acceptance while fascicle length on the contralateral limb decreased on average. The authors found a positive association between fascicle lengthening and increase in knee extensor moments in both limbs. Our results suggest that examining quadriceps muscle dynamics may elucidate underlying mechanisms relevant to osteoarthritis.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Osteoarthritis, Knee , Anterior Cruciate Ligament Injuries/diagnostic imaging , Anterior Cruciate Ligament Injuries/surgery , Anterior Cruciate Ligament Reconstruction/methods , Biomechanical Phenomena/physiology , Humans , Knee Joint/physiology , Osteoarthritis, Knee/surgery , Quadriceps Muscle/diagnostic imaging , Quadriceps Muscle/physiology
6.
J Exp Biol ; 224(15)2021 08 01.
Article in English | MEDLINE | ID: mdl-34350951

ABSTRACT

The triceps surae muscle-tendon unit is composed of the lateral and medial gastrocnemius (MG) and soleus (SOL) muscles and three in-series elastic 'subtendons' that form the Achilles tendon. Comparative literature and our own in vivo evidence suggest that sliding between adjacent subtendons may facilitate independent muscle actuation. We aim to more clearly define the relationship between individual muscle activation and subtendon tissue displacements. Here, during fixed-end contractions, electrical muscle stimulation controlled the magnitude of force transmitted via individual triceps surae muscles while ultrasound imaging recorded resultant subtendon tissue displacements. We hypothesized that MG and SOL stimulation would elicit larger displacements in their associated subtendon. Ten young adults completed four experimental activations at three ankle angles (-20, 0 and 20 deg) with the knee flexed to approximately 20 deg: MG stimulation (STIMMG), SOL stimulation (STIMSOL), combined stimulation, and volitional contraction. At 20 deg plantarflexion, STIMSOL elicited 49% larger tendon non-uniformity (SOL-MG subtendon tissue displacement) than that of STIMMG (P=0.004). For STIMSOL, a one-way post hoc ANOVA revealed a significant main effect of ankle angle (P=0.009) on Achilles tendon non-uniformity. However, peak tendon non-uniformity decreased by an average of 61% from plantarflexion to dorsiflexion, likely due to an increase in passive tension. Our results suggest that localized tissue displacements within the Achilles tendon respond in anatomically consistent ways to differential patterns of triceps surae muscle activation, but these relations are highly susceptible to ankle angle. This in vivo evidence points to at least some mechanical independence in actuation between the human triceps surae muscle-subtendon units.


Subject(s)
Achilles Tendon , Ankle Joint , Humans , Leg , Muscle, Skeletal , Range of Motion, Articular , Young Adult
7.
Proc Biol Sci ; 287(1933): 20200431, 2020 08 26.
Article in English | MEDLINE | ID: mdl-32811308

ABSTRACT

Ground contact duration and stride frequency each affect muscle metabolism and help scientists link walking and running biomechanics to metabolic energy expenditure. While these parameters are often used independently, the product of ground contact duration and stride frequency (i.e. duty factor) may affect muscle contractile mechanics. Here, we sought to separate the metabolic influence of the duration of active force production, cycle frequency and duty factor. Human participants produced cyclic contractions using their soleus (which has a relatively homogeneous fibre type composition) at prescribed cycle-average ankle moments on a fixed dynamometer. Participants produced these ankle moments over short, medium and long durations while maintaining a constant cycle frequency. Overall, decreased duty factor did not affect cycle-average fascicle force (p ≥ 0.252) but did increase net metabolic power (p ≤ 0.022). Mechanistically, smaller duty factors increased maximum muscle-tendon force (p < 0.001), further stretching in-series tendons and shifting soleus fascicles to shorter lengths and faster velocities, thereby increasing soleus total active muscle volume (p < 0.001). Participant soleus total active muscle volume well-explained net metabolic power (r = 0.845; p < 0.001). Therefore, cyclically producing the same cycle-average muscle-tendon force using a decreased duty factor increases metabolic energy expenditure by eliciting less economical muscle contractile mechanics.


Subject(s)
Energy Metabolism/physiology , Muscle, Skeletal/physiology , Tendons/physiology , Adult , Ankle/physiology , Female , Gait/physiology , Humans , Male , Muscle Contraction/physiology , Running/physiology , Walking/physiology
8.
Connect Tissue Res ; 61(1): 104-113, 2020 01.
Article in English | MEDLINE | ID: mdl-31116576

ABSTRACT

Background: Mechanical power generated via triceps surae muscle-tendon interaction during walking is important for walking performance. This interaction is made complex by distinct "subtendons" arising from the lateral and medial gastrocnemius (GAS) and soleus (SOL) muscles. Comparative data and our own in vivo evidence allude to a reduced capacity for sliding between adjacent subtendons compromising the Achilles tendon in old age. However, its unclear if and how these changes affect muscle contractile behavior.Objective: We investigated aging effects on triceps surae muscle-subtendon interaction using dual-probe ultrasound imaging during isolated muscle contractions. We hypothesized that, compared to young adults, older adults would have more uniform subtendon tissue displacements that are accompanied by anatomically consistent differences in GAS versus SOL muscle length change behavior.Materials and Methods: 9 younger subjects (age: 25.1 ± 5.6 years) and 10 older adult subjects (age: 74.3 ± 3.4 years) completed a series of ramped maximum isometric voluntary contractions at ankle angles spanning 0° (neutral) to 30° plantarflexion. Two linear array ultrasound transducers simultaneously recorded GAS and SOL fascicle kinematics and tissue displacements in their associated tendinous structures.Results: We revealed that older adults have more uniform subtendon tissue displacements that extend to anatomically consistent and potentially unfavorable changes in muscle contractile behavior - evidenced by smaller differences between gastrocnemius and soleus peak shortening during isometric force generation.Conclusions: These findings provide an important biomechanical basis for previously reported correlations between more uniform Achilles subtendon behavior and reduced ankle moment generation during waking in older adults.


Subject(s)
Achilles Tendon/physiology , Aging/physiology , Ankle Joint/physiology , Muscle Contraction/physiology , Muscle, Skeletal/physiology , Walking/physiology , Adult , Aged , Biomechanical Phenomena , Female , Humans , Male
9.
J Neuroeng Rehabil ; 17(1): 139, 2020 10 21.
Article in English | MEDLINE | ID: mdl-33087137

ABSTRACT

Advances in medical diagnosis and treatment have facilitated the emergence of precision medicine. In contrast, locomotor rehabilitation for individuals with acquired neuromotor injuries remains limited by the dearth of (i) diagnostic approaches that can identify the specific neuromuscular, biomechanical, and clinical deficits underlying impaired locomotion and (ii) evidence-based, targeted treatments. In particular, impaired propulsion by the paretic limb is a major contributor to walking-related disability after stroke; however, few interventions have been able to target deficits in propulsion effectively and in a manner that reduces walking disability. Indeed, the weakness and impaired control that is characteristic of post-stroke hemiparesis leads to heterogeneous deficits that impair paretic propulsion and contribute to a slow, metabolically-expensive, and unstable gait. Current rehabilitation paradigms emphasize the rapid attainment of walking independence, not the restoration of normal propulsion function. Although walking independence is an important goal for stroke survivors, independence achieved via compensatory strategies may prevent the recovery of propulsion needed for the fast, economical, and stable gait that is characteristic of healthy bipedal locomotion. We posit that post-stroke rehabilitation should aim to promote independent walking, in part, through the acquisition of enhanced propulsion. In this expert review, we present the biomechanical and functional consequences of post-stroke propulsion deficits, review advances in our understanding of the nature of post-stroke propulsion impairment, and discuss emerging diagnostic and treatment approaches that have the potential to facilitate new rehabilitation paradigms targeting propulsion restoration.


Subject(s)
Gait Disorders, Neurologic/physiopathology , Gait Disorders, Neurologic/rehabilitation , Stroke Rehabilitation , Stroke/physiopathology , Biomechanical Phenomena , Female , Humans , Leg/physiopathology , Locomotion/physiology , Male , Middle Aged , Paresis/etiology , Paresis/physiopathology , Paresis/rehabilitation , Stroke/complications , Walking/physiology
10.
J Aging Phys Act ; 28(1): 1-8, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31141428

ABSTRACT

We elucidated functional limitations in older adult gait by increasing horizontal impeding forces and walking speed to their maximums compared to dynamometry and to data from their young counterparts. Specifically, we investigated which determinants of push-off intensity represent genuine functionally limiting impairments in older adult gait versus biomechanical changes that do not directly limit walking performance. We found that older adults walked at their preferred speed with hallmark deficits in push-off intensity. These subjects were fully capable of overcoming deficits in propulsive ground reaction force, trailing limb positive work, trailing leg and hip extension, and ankle power generation when the propulsive demands of walking were increased to maximum. Of the outcomes tested, age-related deficits in ankle moment emerged as the lone genuine functionally limiting impairment in older adults. Distinguishing genuine functional limitations from age-related differences masquerading as limitations represents a critical step toward the development and prescription of effective interventions.


Subject(s)
Biomechanical Phenomena , Gait , Walking , Aged , Aging , Ankle Joint , Humans , Walking Speed , Young Adult
11.
J Appl Biomech ; 36(4): 209-216, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32502975

ABSTRACT

Ankle joint quasi-stiffness is an aggregate measure of the interaction between triceps surae muscle stiffness and Achilles tendon stiffness. This interaction may be altered due to age-related changes in the structural properties and functional behavior of the Achilles tendon and triceps surae muscles. The authors hypothesized that, due to a more compliant of Achilles' tendon, older adults would exhibit lower ankle joint quasi-stiffness than young adults during walking and during isolated contractions at matched triceps surae muscle activations. The authors also hypothesized that, independent of age, triceps surae muscle stiffness and ankle joint quasi-stiffness would increase with triceps surae muscle activation. The authors used conventional gait analysis in one experiment and, in another, electromyographic biofeedback and in vivo ultrasound imaging applied during isolated contractions. The authors found no difference in ankle joint quasi-stiffness between young and older adults during walking. Conversely, this study found that (1) young and older adults modulated ankle joint quasi-stiffness via activation-dependent changes in triceps surae muscle length-tension behavior and (2) at matched activation, older adults exhibited lower ankle joint quasi-stiffness than young adults. Despite age-related reductions during isolated contractions, ankle joint quasi-stiffness was maintained in older adults during walking, which may be governed via activation-mediated increases in muscle stiffness.

12.
J Neuroeng Rehabil ; 16(1): 81, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31262319

ABSTRACT

BACKGROUND: Walking balance in older adults is disproportionately susceptible to lateral instability provoked by optical flow perturbations. The prolonged exposure to these perturbations could promote reactive balance control and increased balance confidence in older adults, but this scientific premise has yet to be investigated. This proof of concept study was designed to investigate the propensity for time-dependent tuning of walking balance control and the presence of aftereffects in older adults following a single session of optical flow perturbation training. METHODS: Thirteen older adults participated in a randomized, crossover design performed on different days that included 10 min of treadmill walking with (experimental session) and without (control session) optical flow perturbations. We used electromyographic recordings of leg muscle activity and 3D motion capture to quantify foot placement kinematics, lateral margin of stability, and antagonist coactivation during normal walking (baseline), early (min 1) and late (min 10) responses to perturbations, and aftereffects immediately following perturbation cessation (post). RESULTS: At their onset, perturbations elicited 17% wider and 7% shorter steps, higher step width and length variability (+171% and +132%, respectively), larger and more variable margins of stability (MoS), and roughly twice the antagonist leg muscle coactivation (p-values<0.05). Despite continued perturbations, most outcomes returned to values observed during normal, unperturbed walking by the end of prolonged exposure. After 10 min of perturbation training and their subsequent cessation, older adults walked with longer and more narrow steps, modest increases in foot placement variability, and roughly half the MoS variability and antagonist lower leg muscle coactivation as they did before training. CONCLUSIONS: Findings suggest that older adults: (i) respond to the onset of perturbations using generalized anticipatory balance control, (ii) deprioritize that strategy following prolonged exposure to perturbations, and (iii) upon removal of perturbations, exhibit short-term aftereffects that indicate a lessening of anticipatory control, an increase in reactive control, and/or increased balance confidence. We consider this an early, proof-of-concept study into the clinical utility of prolonged exposure to optical flow perturbations as a training tool for corrective motor adjustments relevant to walking balance integrity toward reinforcing task-specific, reactive control and/or improving balance confidence in older adults. TRIAL REGISTRATION: clinicaltrials.gov ( NCT03341728 ). Registered 14 November 2017.


Subject(s)
Physical Therapy Modalities , Postural Balance/physiology , Sensation Disorders/rehabilitation , Aged , Biomechanical Phenomena , Female , Humans , Male , Muscle, Skeletal/physiology , Walking/physiology
13.
J Appl Biomech ; 35(3): 182-189, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-30676171

ABSTRACT

The triceps surae muscle-tendon units are important in governing walking performance, acting to regulate mechanical behavior of the ankle through interaction between active muscle and passive elastic structures. Ankle joint quasi-stiffness (the slope of the relation between ankle moment and ankle rotation, kA) is a useful aggregate measure of this mechanical behavior. However, the role of muscle activation and length-tension behavior in augmenting kA remains unclear. In this study, 10 subjects completed eccentric isokinetic contractions at rest and at 2 soleus activation levels (25% and 75% isometric voluntary contraction) prescribed using electromyographic biofeedback. Ultrasound imaging quantified activation-dependent modulation of soleus muscle length-tension behavior and its role in augmenting kA. The authors found that soleus muscle stiffness (kM) and kA exhibit nonlinear relations with muscle activation and both were more sensitive to the onset of activation than to subsequent increases in activation. Our findings also suggest that kA can be modulated via activation through changes in soleus muscle length-tension behavior. However, this modulation is more complex than previously appreciated-reflecting interaction between active muscle and passive elastic tissues. Our findings may have implications for understanding normal and pathological ankle joint function and the design of impedance-based prostheses.


Subject(s)
Ankle Joint/physiology , Muscle, Skeletal/physiology , Ankle Joint/diagnostic imaging , Biomechanical Phenomena , Electromyography , Female , Humans , Isometric Contraction/physiology , Male , Muscle Contraction/physiology , Muscle, Skeletal/diagnostic imaging , Ultrasonography , Young Adult
14.
J Neurophysiol ; 120(5): 2368-2378, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30133380

ABSTRACT

Older adults are at a high risk of falls, and most falls occur during locomotor activities like walking. This study aimed to improve our understanding of changes in neuromuscular control associated with increased risk of falls in older adults in the presence of dynamic balance challenges during walking. Motor module (also known as muscle synergy) analyses identified changes in the neuromuscular recruitment of leg muscles during walking with and without perturbations designed to elicit the visual perception of lateral instability. During normal walking we found that a history of falls (but not age) was associated with reduced motor module complexity and that age (but not a history of falls) was associated with increased step-to-step variability of module recruitment timing. Furthermore, motor module complexity was unaltered in the presence of optical flow perturbations. The specific effects of a history of falls on leg muscle recruitment included an absence and/or inability to independently recruit motor modules normally recruited to perform biomechanical functions important for walking balance control. These results suggest that fallers do not recruit the appropriate motor modules necessary for well-coordinated walking balance control even in the presence of perturbations. The identified changes in the modular control of walking balance in older fallers may either represent a neural deficit that leads to poor balance control or a prior history of falls that results in a compensatory motor adaptation. In either case, our study provides initial evidence that a reduced motor repertoire in older adult fallers may be a constraint on their ability to appropriately respond to balance challenges during walking. NEW & NOTEWORTHY This is the first study to demonstrate a reduced motor repertoire during walking in older adults with a history of falls but without any overt neurological deficits. Furthermore, using virtual reality during walking to elicit the visual perception of lateral instability, we provide initial evidence that a reduced motor repertoire in older adult fallers may be a constraint on their ability to appropriately respond to balance challenges during walking.


Subject(s)
Accidental Falls , Aging/physiology , Postural Balance , Walking/physiology , Adult , Aged , Aged, 80 and over , Female , Humans , Leg/growth & development , Leg/physiology , Male , Muscle, Skeletal/growth & development , Muscle, Skeletal/physiology , Psychomotor Performance , Recruitment, Neurophysiological , Virtual Reality
15.
J Exp Biol ; 221(Pt 22)2018 11 16.
Article in English | MEDLINE | ID: mdl-30266784

ABSTRACT

The plantarflexor muscles are critical for forward propulsion and leg swing initiation during the push-off phase of walking, serving to modulate step length and walking speed. However, reduced ankle power output is common in aging and gait pathology, and is considered a root biomechanical cause of compensatory increases in hip power generation and increased metabolic energy cost. There is a critical need for mechanistic insight into the precise influence of ankle power output on patterns of mechanical power generation at the individual joint and limb levels during walking. We also posit that rehabilitative approaches to improve locomotor patterns should consider more direct means to elicit favorable changes in ankle power output. Thus, here we used real-time inverse dynamics in a visual biofeedback paradigm to test young adults' ability to modulate ankle power output during preferred speed treadmill walking, and the effects thereof on gait kinematics and kinetics. Subjects successfully modulated peak ankle power in response to biofeedback targets designed to elicit up to ±20% of normal walking values. Increasing ankle power output alleviated mechanical power demands at the hip and increased trailing limb positive work, propulsive ground reaction forces and step lengths. Decreasing ankle power had the opposite effects. We conclude that ankle power generation systematically influences the workload placed on more proximal leg muscles, trailing leg mechanical output and step length. Our findings also provide a promising benchmark for the application of biofeedback to restore ankle power in individuals with deficits thereof due to aging and gait pathology.


Subject(s)
Ankle Joint/physiology , Ankle/physiology , Biofeedback, Psychology , Visual Perception , Walking/physiology , Adult , Biomechanical Phenomena , Female , Gait/physiology , Humans , Kinetics , Male , Young Adult
16.
J Appl Biomech ; 34(6): 474-482, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-29989477

ABSTRACT

Aging and many gait pathologies are characterized by reduced propulsive forces and ankle moment and power generation during trailing leg push-off in walking. Despite those changes, we posit that many individuals retain an underutilized reserve for enhancing push-off intensity during walking that may be missed using conventional dynamometry. By using a maximum ramped impeding force protocol and maximum speed walking, we gained mechanistic insight into the factors that govern push-off intensity and the available capacity thereof during walking in young subjects. We discovered in part that young subjects walking at their preferred speed retain a reserve capacity for exerting larger propulsive forces of 49%, peak ankle power of 43%, and peak ankle moment of 22% during push-off-the latter overlooked by maximum isometric dynamometry. We also provide evidence that these reserve capacities are governed at least in part by the neuromechanical behavior of the plantarflexor muscles, at least with regard to ankle moment generation. We envision that a similar paradigm used to quantify propulsive reserves in older adults or people with gait pathology would empower the more discriminate and personalized prescription of gait interventions seeking to improve push-off intensity and thus walking performance.

18.
PLoS One ; 19(4): e0302021, 2024.
Article in English | MEDLINE | ID: mdl-38625839

ABSTRACT

Falls among older adults are a costly public health concern. Such falls can be precipitated by balance disturbances, after which a recovery strategy requiring rapid, high force outputs is necessary. Sarcopenia among older adults likely diminishes their ability to produce the forces necessary to arrest gait instability. Age-related changes to tendon stiffness may also delay muscle stretch and afferent feedback and decrease force transmission, worsening fall outcomes. However, the association between muscle strength, tendon stiffness, and gait instability is not well established. Given the ankle's proximity to the onset of many walking balance disturbances, we examined the relation between both plantarflexor strength and Achilles tendon stiffness with walking-related instability during perturbed gait in older and younger adults-the latter quantified herein using margins of stability and whole-body angular momentum including the application of treadmill-induced slip perturbations. Older and younger adults did not differ in plantarflexor strength, but Achilles tendon stiffness was lower in older adults. Among older adults, plantarflexor weakness associated with greater whole-body angular momentum following treadmill-induced slip perturbations. Weaker older adults also appeared to walk and recover from treadmill-induced slip perturbations with more caution. This study highlights the role of plantarflexor strength and Achilles tendon stiffness in regulating lateral gait stability in older adults, which may be targets for training protocols seeking to minimize fall risk and injury severity.


Subject(s)
Achilles Tendon , Gait Disorders, Neurologic , Humans , Aged , Gait/physiology , Walking/physiology , Aging/physiology , Mechanical Phenomena , Achilles Tendon/physiology , Postural Balance , Biomechanical Phenomena
19.
J Biomech ; 163: 111926, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38183761

ABSTRACT

Chronic ankle instability is a condition linked to progressive early ankle joint degeneration. Patients with chronic ankle instability exhibit altered biomechanics during gait and jump landings and these alterations are believed to contribute to aberrant joint loading and subsequent joint degeneration. Musculoskeletal modeling has the capacity to estimate joint loads from individual muscle forces. However, the influence of chronic ankle instability on joint contact forces remains largely unknown. The objective of this study was to compare tri-axial (i.e., compressive, anterior-posterior, and medial-lateral) ankle joint contact forces between those with and without chronic ankle instability during the ground contact phase of a drop vertical jump. Fifteen individuals with and 15 individuals without chronic ankle instability completed drop vertical jump maneuvers in a research laboratory. We used those data to drive three-dimensional musculoskeletal simulations and estimate muscle forces and tri-axial joint contact force variables (i.e., peak and impulse). Compared to those without chronic ankle instability, the ankles of patients with chronic ankle instability underwent lower compressive ankle joint contact forces as well as lower anterior-posterior and medial-lateral shearing forces during the weight acceptance phase of landing (p <.05). These findings suggest that patients with chronic ankle instability exhibit lower ankle joint loading patterns than uninjured individuals during a drop vertical jump, which may be considered in rehabilitation to potentially reduce the risk of early onset of ankle joint degeneration.


Subject(s)
Ankle Injuries , Joint Instability , Humans , Ankle Joint , Ankle , Muscles , Biomechanical Phenomena
20.
Med Sci Sports Exerc ; 56(3): 411-417, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37796166

ABSTRACT

PURPOSE: Less physical activity has been associated with systemic biomarkers of cartilage breakdown after anterior cruciate ligament reconstruction (ACLR). However, previous research lacks analysis of deleterious cartilage compositional changes and objective physical activity after ACLR. The purpose of this study was to determine the association between physical activity quantified via accelerometer-based measures of daily steps and time in moderate-to-vigorous physical activity (MVPA), and T1rho magnetic resonance imaging (MRI) of the femoral articular cartilage, a marker of proteoglycan density in individuals with ACLR. METHODS: Daily steps and MVPA were assessed over 7 d using an accelerometer worn on the hip in 26 individuals between 6 and 12 months after primary unilateral ACLR. Resting T1rho MRI was collected bilaterally, and T1rho MRI interlimb ratios (ILR: ACLR limb/contralateral limb) were calculated for lateral and medial femoral condyle regions of interest. We conducted univariate linear regression analyses to determine associations between T1rho MRI ILRs and daily steps and MVPA with and without controlling for sex. RESULTS: Greater T1rho MRI ILR of the central lateral femoral condyle, indicative of less proteoglycan density in the ACLR limb, was associated with greater time in MVPA ( R2 = 0.178, P = 0.032). Sex-adjusted models showed significant interaction terms between daily steps and sex in the anterior ( P = 0.025), central ( P = 0.002), and posterior ( P = 0.002) medial femoral condyle. CONCLUSIONS: Lesser physical activity may be a risk factor for maintaining cartilage health after ACLR; additionally, the relationship between physical activity and cartilage health may be different between males and females.


Subject(s)
Anterior Cruciate Ligament Injuries , Anterior Cruciate Ligament Reconstruction , Cartilage, Articular , Male , Female , Humans , Anterior Cruciate Ligament Injuries/diagnostic imaging , Anterior Cruciate Ligament Injuries/surgery , Knee Joint , Cartilage, Articular/diagnostic imaging , Femur , Anterior Cruciate Ligament Reconstruction/methods , Magnetic Resonance Imaging/methods , Proteoglycans
SELECTION OF CITATIONS
SEARCH DETAIL