Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Bull Math Biol ; 85(10): 92, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37653164

ABSTRACT

The use of oncolytic viruses as cancer treatment has received considerable attention in recent years, however the spatial dynamics of this viral infection is still poorly understood. We present here a stochastic agent-based model describing infected and uninfected cells for solid tumours, which interact with viruses in the absence of an immune response. Two kinds of movement, namely undirected random and pressure-driven movements, are considered: the continuum limit of the models is derived and a systematic comparison between the systems of partial differential equations and the individual-based model, in one and two dimensions, is carried out. In the case of undirected movement, a good agreement between agent-based simulations and the numerical and well-known analytical results for the continuum model is possible. For pressure-driven motion, instead, we observe a wide parameter range in which the infection of the agents remains confined to the center of the tumour, even though the continuum model shows traveling waves of infection; outcomes appear to be more sensitive to stochasticity and uninfected regions appear harder to invade, giving rise to irregular, unpredictable growth patterns. Our results show that the presence of spatial constraints in tumours' microenvironments limiting free expansion has a very significant impact on virotherapy. Outcomes for these tumours suggest a notable increase in variability. All these aspects can have important effects when designing individually tailored therapies where virotherapy is included.


Subject(s)
Models, Biological , Oncolytic Viruses , Mathematical Concepts , Motion
2.
J Theor Biol ; 541: 111091, 2022 05 21.
Article in English | MEDLINE | ID: mdl-35283184

ABSTRACT

Based on reported trends in relapse incidence among patients with relapsing-remitting multiple sclerosis, an original model for the response to disease modifying therapies is proposed. With a population approach and separate states for patients accounting for their risk of relapses, a system of nonlinear equations is formulated, similarly to established epidemiological models. Different parameters describe the effect of drugs and treatment switch in reducing the frequency of relapses. The model allows for a good fit to previously published data for experiments where different drugs are used. It also shows that different treatments maintain a high degree of similarity, with analogous dynamical features: a pre-treatment increment in relapse frequency leading to a distinct peak, a rapid drop after treatment switch and a plateau corresponding to a new base relapse activity, which seems dependant on the treatment chosen. A sensitivity analysis shows that the uncertainty in the initial proportions of different populations and the frequency of relapses can modify the overall dynamics of the response to treatment. Drugs are observed to induce effects that depend on patient sample's intrinsic characteristics, producing two clearly distinct and independent dynamics of relapse response. This confirms the clinical observation that certain drugs may be overall more successful in lowering the rate of relapses more significantly than others, notwithstanding the fact that patients behave differently across experiments.


Subject(s)
Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Humans , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/epidemiology , Recurrence
3.
Mult Scler ; 27(12): 1838-1851, 2021 10.
Article in English | MEDLINE | ID: mdl-33423618

ABSTRACT

BACKGROUND: A delayed onset of treatment effect, termed therapeutic lag, may influence the assessment of treatment response in some patient subgroups. OBJECTIVES: The objective of this study is to explore the associations of patient and disease characteristics with therapeutic lag on relapses and disability accumulation. METHODS: Data from MSBase, a multinational multiple sclerosis (MS) registry, and OFSEP, the French MS registry, were used. Patients diagnosed with MS, minimum 1 year of exposure to MS treatment and 3 years of pre-treatment follow-up, were included in the analysis. Studied outcomes were incidence of relapses and disability accumulation. Therapeutic lag was calculated using an objective, validated method in subgroups stratified by patient and disease characteristics. Therapeutic lag under specific circumstances was then estimated in subgroups defined by combinations of clinical and demographic determinants. RESULTS: High baseline disability scores, annualised relapse rate (ARR) ⩾ 1 and male sex were associated with longer therapeutic lag on disability progression in sufficiently populated groups: females with expanded disability status scale (EDSS) < 6 and ARR < 1 had mean lag of 26.6 weeks (95% CI = 18.2-34.9), males with EDSS < 6 and ARR < 1 31.0 weeks (95% CI = 25.3-36.8), females with EDSS < 6 and ARR ⩾ 1 44.8 weeks (95% CI = 24.5-65.1), and females with EDSS ⩾ 6 and ARR < 1 54.3 weeks (95% CI = 47.2-61.5). CONCLUSIONS: Pre-treatment EDSS and ARR are the most important determinants of therapeutic lag.


Subject(s)
Disabled Persons , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Disability Evaluation , Disease Progression , Female , Humans , Male , Multiple Sclerosis/drug therapy , Recurrence , Registries
4.
Brain ; 143(9): 2742-2756, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32947619

ABSTRACT

In multiple sclerosis, treatment start or switch is prompted by evidence of disease activity. Whilst immunomodulatory therapies reduce disease activity, the time required to attain maximal effect is unclear. In this study we aimed to develop a method that allows identification of the time to manifest fully and clinically the effect of multiple sclerosis treatments ('therapeutic lag') on clinical disease activity represented by relapses and progression-of-disability events. Data from two multiple sclerosis registries, MSBase (multinational) and OFSEP (French), were used. Patients diagnosed with multiple sclerosis, minimum 1-year exposure to treatment, minimum 3-year pretreatment follow-up and yearly review were included in the analysis. For analysis of disability progression, all events in the subsequent 5-year period were included. Density curves, representing incidence of relapses and 6-month confirmed progression events, were separately constructed for each sufficiently represented therapy. Monte Carlo simulations were performed to identify the first local minimum of the first derivative after treatment start; this point represented the point of stabilization of treatment effect, after the maximum treatment effect was observed. The method was developed in a discovery cohort (MSBase), and externally validated in a separate, non-overlapping cohort (OFSEP). A merged MSBase-OFSEP cohort was used for all subsequent analyses. Annualized relapse rates were compared in the time before treatment start and after the stabilization of treatment effect following commencement of each therapy. We identified 11 180 eligible treatment epochs for analysis of relapses and 4088 treatment epochs for disability progression. External validation was performed in four therapies, with no significant difference in the bootstrapped mean differences in therapeutic lag duration between registries. The duration of therapeutic lag for relapses was calculated for 10 therapies and ranged between 12 and 30 weeks. The duration of therapeutic lag for disability progression was calculated for seven therapies and ranged between 30 and 70 weeks. Significant differences in the pre- versus post-treatment annualized relapse rate were present for all therapies apart from intramuscular interferon beta-1a. In conclusion we have developed, and externally validated, a method to objectively quantify the duration of therapeutic lag on relapses and disability progression in different therapies in patients more than 3 years from multiple sclerosis onset. Objectively defined periods of expected therapeutic lag allows insights into the evaluation of treatment response in randomized clinical trials and may guide clinical decision-making in patients who experience early on-treatment disease activity. This method will subsequently be applied in studies that evaluate the effect of patient and disease characteristics on therapeutic lag.


Subject(s)
Disease Progression , Immunologic Factors/administration & dosage , Immunosuppressive Agents/administration & dosage , Multiple Sclerosis/drug therapy , Multiple Sclerosis/physiopathology , Adult , Cohort Studies , Female , Follow-Up Studies , Humans , Male , Middle Aged , Multiple Sclerosis/diagnostic imaging , Natalizumab/administration & dosage , Prospective Studies , Registries , Time Factors , Treatment Outcome
5.
J Chem Phys ; 154(9): 094116, 2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33685171

ABSTRACT

We analyze the phase-space compression, characteristic of all deterministic, dissipative systems for an inhomogeneous boundary-driven shear fluid via nonequilibrium molecular dynamics simulations. We find that, although the full system undergoes a phase space contraction, the marginal distribution of the fluid particles is described by a smooth, volume preserving probability density function. This is the case for most thermodynamic states of physical interest. Hence, we show that the models currently employed to investigate inhomogeneous fluids in a nonequilibrium steady state, in which only walls are thermostatted, generate a non-singular distribution for the fluid.

6.
J Math Biol ; 83(3): 31, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34436682

ABSTRACT

Mycobacterium tuberculosis infection features various disease outcomes: clearance, latency, active disease, and latent tuberculosis infection (LTBI) reactivation. Identifying the decisive factors for disease outcomes and progression is crucial to elucidate the macrophages-tuberculosis interaction and provide insights into therapeutic strategies. To achieve this goal, we first model the disease progression as a dynamical shift among different disease outcomes, which are characterized by various steady states of bacterial concentration. The causal mechanisms of steady-state transitions can be the occurrence of transcritical and saddle-node bifurcations, which are induced by slowly changing parameters. Transcritical bifurcation, occurring when the basic reproduction number equals to one, determines whether the infection clears or spreads. Saddle-node bifurcation is the key mechanism to create and destroy steady states. Based on these two steady-state transition mechanisms, we carry out two sample-based sensitivity analyses on transcritical bifurcation conditions and saddle-node bifurcation conditions. The sensitivity analysis results suggest that the macrophage apoptosis rate is the most significant factor affecting the transition in disease outcomes. This result agrees with the discovery that the programmed cell death (apoptosis) plays a unique role in the complex microorganism-host interplay. Sensitivity analysis narrows down the parameters of interest, but cannot answer how these parameters influence the model outcomes. To do this, we employ bifurcation analysis and numerical simulation to unfold various disease outcomes induced by the variation of macrophage apoptosis rate. Our findings support the hypothesis that the regulation mechanism of macrophage apoptosis affects the host immunity against tuberculosis infection and tuberculosis virulence. Moreover, our mathematical results suggest that new treatments and/or vaccines that regulate macrophage apoptosis in combination with weakening bacillary viability and/or promoting adaptive immunity could have therapeutic value.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Apoptosis , Basic Reproduction Number , Computer Simulation , Humans , Macrophages
7.
Nano Lett ; 20(5): 3396-3402, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32293187

ABSTRACT

Electropumping has been shown to be an effective means of inducing a net positive flow in fluids confined within planar nanochannels and carbon nanotubes. In this Letter, we investigate the efficiency of electropumping relative to Couette and Poiseuille flows. We apply a spatially uniform rotating electric field to a fluid confined in a functionalized nanochannel that couples the water's permanent dipole moment resulting in a net positive flow. We then induce a net positive flow in nanochannels for Couette and Poiseuille flows, matching volume flow rates to allow a direct comparison of average power dissipation per unit volume between all flow types. We show that while electropumping is less efficient than Couette flow, it is 4 orders of magnitude more efficient than Poiseuille flow. This suggests that, rather than being a mere novelty, electropumping is a far more energetically efficient means of transporting water compared to conventional pressure driven pumping.

8.
J Theor Biol ; 485: 110052, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31626813

ABSTRACT

Oncolytic virotherapy is a promising cancer treatment using genetically modified viruses. Unfortunately, virus particles rapidly decay inside the body, significantly hindering their efficacy. In this article, treatment perturbations that could overcome obstacles to oncolytic virotherapy are investigated through the development of a Voronoi Cell-Based model (VCBM). The VCBM derived captures the interaction between an oncolytic virus and cancer cells in a 2-dimensional setting by using an agent-based model, where cell edges are designated by a Voronoi tessellation. Here, we investigate the sensitivity of treatment efficacy to the configuration of the treatment injections for different tumour shapes: circular, rectangular and irregular. The model predicts that multiple off-centre injections improve treatment efficacy irrespective of tumour shape. Additionally, we investigate delaying the infection of cancer cells by modifying viral particles with a substance such as alginate (a hydrogel polymer used in a range of cancer treatments). Simulations of the VCBM show that delaying the infection of cancer cells, and thus allowing more time for virus dissemination, can improve the efficacy of oncolytic virotherapy. The simulated treatment noticeably decreases the tumour size with no increase in toxicity. Improving oncolytic virotherapy in this way allows for a more effective treatment without changing its fundamental essence.


Subject(s)
Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Cell Line, Tumor , Humans , Neoplasms/therapy
9.
Langmuir ; 35(45): 14742-14749, 2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31614091

ABSTRACT

Electropumping has shown great potential as an effective means of inducing a net positive flow of water in confined channels. In this paper we present the first nonequilibrium molecular dynamics study and continuum based numerical solutions that demonstrate an effective net positive flow between concentric carbon nanotubes (CNT) using electropumping. We apply a spatially uniform rotating electric field that couples to the water's permanent dipole moment. Taking advantage of the coupling between the spin angular momentum and the linear momentum we break the symmetry of the channel radius by functionalizing the inner CNT's outer surface with carboxyl groups to induce a net positive flow. We also show that our results for concentric nanotubes are consistent with our previous work where we demonstrated that an increase in functionalization beyond an optimal point in a single walled carbon nanotube resulted in a decrease in positive net flow. We then numerically solve the coupled hydrodynamic momentum equations to show that the nonequilibrium molecular dynamics results are consistent with the continuum theory.

10.
J Theor Biol ; 480: 129-140, 2019 11 07.
Article in English | MEDLINE | ID: mdl-31400344

ABSTRACT

Oncolytic viruses are genetically engineered to treat growing tumours and represent a very promising therapeutic strategy. Using a Gompertz growth law, we discuss a model that captures the in vivo dynamics of a cancer under treatment with an oncolytic virus. With the aid of local stability analysis and bifurcation plots, the typical interactions between virus and tumour are investigated. The system shows a singular equilibrium and a number of nonlinear behaviours that have interesting biological consequences, such as long-period oscillations and bistable states where two different outcomes can occur depending on the initial conditions. Complete tumour eradication appears to be possible only for parameter combinations where viral characteristics match well with the tumour growth rate. Interestingly, the model shows that therapies with a high initial injection or involving a highly effective virus do not universally result in successful strategies for eradication. Further, the use of additional, "boosting" injection schedules does not always lead to complete eradication. Our framework, instead, suggests that low viral loads can be in some cases more effective than high loads, and that a less resilient virus can help avoid high amplitude oscillations between tumours and virus. Finally, the model points to a number of interesting findings regarding the role of oscillations and bistable states between a tumour and an oncolytic virus. Strategies for the elimination of such fluctuations depend strongly on the initial viral load and the combination of parameters describing the features of the tumour and virus.


Subject(s)
Models, Biological , Neoplasms/pathology , Neoplasms/therapy , Oncolytic Virotherapy , Animals , Cell Proliferation , Computer Simulation , Humans , Oncolytic Viruses/physiology
11.
Bull Math Biol ; 81(11): 4313-4342, 2019 11.
Article in English | MEDLINE | ID: mdl-29651669

ABSTRACT

Human papillomavirus (HPV), a sexually transmitted infection, is the necessary cause of cervical cancer, the third most common cancer affecting women worldwide. Prevention and control strategies include vaccination, screening, and treatment. While HPV prevention and control efforts are important worldwide, they are especially important in low-income areas with a high infection rate or high rate of cervical cancer. This study uses mathematical modeling to explore various vaccination and treatment strategies to control for HPV and cervical cancer while using Nepal as a case study. Two sets of deterministic models were created with the goal of understanding the impact of various prevention and control strategies. The first set of models examines the relative importance of screening and vaccination in an unscreened population, while the second set examines various screening scenarios. Partial rank correlation coefficients confirm the importance of screening and treatment in the reduction of HPV infections and cancer cases even when vaccination uptake is high. Results also indicate that less expensive screening technologies can achieve the same overall goal as more expensive screening technologies.


Subject(s)
Papillomavirus Infections/prevention & control , Computer Simulation , Female , Humans , Mass Screening/statistics & numerical data , Mathematical Concepts , Models, Biological , Nepal/epidemiology , Papillomaviridae/immunology , Papillomavirus Infections/epidemiology , Papillomavirus Infections/immunology , Papillomavirus Vaccines/pharmacology , Population Density , Secondary Prevention/statistics & numerical data , Uterine Cervical Neoplasms/epidemiology , Uterine Cervical Neoplasms/prevention & control , Uterine Cervical Neoplasms/virology , Vaccination/statistics & numerical data
12.
J Chem Phys ; 151(16): 164102, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31675868

ABSTRACT

We have computed the two- and three-particle contribution to the entropy of a Weeks-Chandler-Andersen fluid via molecular dynamics simulations. The three-particle correlation function and entropy were computed with a new method which simplified the calculation. Results are qualitatively similar to Lennard-Jones systems. We observed a numerical instability in the three-particle contribution. This phenomenon has been previously detected when the traditional method is used; thus, it is likely to be intrinsic in the computation. While the effect of statistical fluctuations can be removed through an extrapolation procedure, the discretization error due to the finite bin size is more difficult to characterize. With a correct choice of the bin size, a good estimate of the three-particle entropy contribution can be achieved at any state, even close to the freezing point. We observed that, despite the fact that the magnitude of the three-particle contribution increases significantly compared to that of the two-particle contribution as freezing is approached, the error induced from overestimation of the excess entropy by the two- and three-body terms exceeds that induced by approximating the excess entropy with the two body term alone.

13.
Langmuir ; 32(19): 4765-73, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27115841

ABSTRACT

The extent of confinement effects on water is not clear in the literature. While some properties are affected only within a few nanometers from the wall surface, others are affected over long length scales, but the range is not clear. In this work, we have examined the dielectric response of confined water under the influence of external electric fields along with the dipolar fluctuations at equilibrium. The confinement induces a strong anisotropic effect which is evident up to 100 nm channel width, and may extend to macroscopic dimensions. The root-mean-square fluctuations of the total orientational dipole moment in the direction perpendicular to the surfaces is 1 order of magnitude smaller than the value attained in the parallel direction and is independent of the channel width. Consequently, the isotropic condition is unlikely to be recovered until the channel width reaches macroscopic dimensions. Consistent with dipole moment fluctuations, the effect of confinement on the dielectric response also persists up to channel widths considerably beyond 100 nm. When an electric field is applied in the perpendicular direction, the orientational relaxation is 3 orders of magnitude faster than the dipolar relaxation in the parallel direction and independent of temperature.

14.
J Theor Biol ; 410: 55-64, 2016 12 07.
Article in English | MEDLINE | ID: mdl-27575466

ABSTRACT

Incidence of whooping cough, an infection caused by Bordetella pertussis and Bordetella parapertussis, has been on the rise since the 1980s in many countries. Immunological interactions, such as immune boosting and cross-immunity between pathogens, have been hypothesised to be important drivers of epidemiological dynamics. We present a two-pathogen model of transmission which examines how immune boosting and cross-immunity can influence the timing and severity of epidemics. We use a combination of numerical simulations and bifurcation techniques to study the dynamical properties of the system, particularly the conditions under which stable periodic solutions are present. We derive analytic expressions for the steady state of the single-pathogen model, and give a condition for the presence of periodic solutions. A key result from our two-pathogen model is that, while studies have shown that immune boosting at relatively strong levels can independently generate periodic solutions, cross-immunity allows for the presence of periodic solutions even when the level of immune boosting is weak. Asymmetric cross-immunity can produce striking increases in the incidence and period. Our study underscores the importance of developing a better understanding of the immunological interactions between pathogens in order to improve model-based interpretations of epidemiological data.


Subject(s)
Bordetella parapertussis/immunology , Bordetella pertussis/immunology , Immunity, Herd , Immunization, Secondary , Models, Immunological , Whooping Cough , Cross Reactions , Humans , Whooping Cough/epidemiology , Whooping Cough/immunology , Whooping Cough/prevention & control , Whooping Cough/therapy
15.
J Chem Phys ; 145(10): 104501, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27634265

ABSTRACT

The thermodynamic, structural, and vapor-liquid equilibrium properties of neon are comprehensively studied using ab initio, empirical, and semi-classical intermolecular potentials and classical Monte Carlo simulations. Path integral Monte Carlo simulations for isochoric heat capacity and structural properties are also reported for two empirical potentials and one ab initio potential. The isobaric and isochoric heat capacities, thermal expansion coefficient, thermal pressure coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, and the speed of sound are reported and compared with experimental data for the entire range of liquid densities from the triple point to the critical point. Lustig's thermodynamic approach is formally extended for temperature-dependent intermolecular potentials. Quantum effects are incorporated using the Feynman-Hibbs quantum correction, which results in significant improvement in the accuracy of predicted thermodynamic properties. The new Feynman-Hibbs version of the Hellmann-Bich-Vogel potential predicts the isochoric heat capacity to an accuracy of 1.4% over the entire range of liquid densities. It also predicts other thermodynamic properties more accurately than alternative intermolecular potentials.

16.
J Theor Biol ; 361: 124-32, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25106793

ABSTRACT

The impact of seasonal effects on the time course of an infectious disease can be dramatic. Seasonal fluctuations in the transmission rate for an infectious disease are known mathematically to induce cyclical behaviour and drive the onset of multistable and chaotic dynamics. These properties of forced dynamical systems have previously been used to explain observed changes in the period of outbreaks of infections such as measles, varicella (chickenpox), rubella and pertussis (whooping cough). Here, we examine in detail the dynamical properties of a seasonally forced extension of a model of infection previously used to study pertussis. The model is novel in that it includes a non-linear feedback term capturing the interaction between exposure and the duration of protection against re-infection. We show that the presence of limit cycles and multistability in the unforced system give rise to complex and intricate behaviour as seasonal forcing is introduced. Through a mixture of numerical simulation and bifurcation analysis, we identify and explain the origins of chaotic regions of parameter space. Furthermore, we identify regions where saddle node lines and period-doubling cascades of different orbital periods overlap, suggesting that the system is particularly sensitive to small perturbations in its parameters and prone to multistable behaviour. From a public health point of view - framed through the 'demographic transition' whereby a population׳s birth rate drops over time (and life-expectancy commensurately increases) - we argue that even weak levels of seasonal-forcing and immune boosting may contribute to the myriad of complex and unexpected epidemiological behaviours observed for diseases such as pertussis. Our approach helps to contextualise these epidemiological observations and provides guidance on how to consider the potential impact of vaccination programs.


Subject(s)
Communicable Diseases/epidemiology , Disease Transmission, Infectious/prevention & control , Immunization, Secondary , Models, Biological , Population Dynamics , Seasons , Communicable Diseases/immunology , Humans
17.
Theor Biol Med Model ; 11: 43, 2014 Oct 04.
Article in English | MEDLINE | ID: mdl-25280872

ABSTRACT

BACKGROUND: Highly successful strategies to make populations more resilient to infectious diseases, such as childhood vaccinations programs, may nonetheless lead to unpredictable outcomes due to the interplay between seasonal variations in transmission and a population's immune status. METHODS: Motivated by the study of diseases such as pertussis we introduce a seasonally-forced susceptible-infectious-recovered model of disease transmission with waning and boosting of immunity. We study the system's dynamical properties using a combination of numerical simulations and bifurcation techniques, paying particular attention to the properties of the initial condition space. RESULTS: We find that highly unpredictable behaviour can be triggered by changes in biologically relevant model parameters such as the duration of immunity. In the particular system we analyse--used in the literature to study pertussis dynamics--we identify the presence of an initial-condition landscape containing three coexisting attractors. The system's response to interventions which perturb population immunity (e.g. vaccination "catch-up" campaigns) is therefore difficult to predict. CONCLUSION: Given the increasing use of models to inform policy decisions regarding vaccine introduction and scheduling and infectious diseases intervention policy more generally, our findings highlight the importance of thoroughly investigating the dynamical properties of those models to identify key areas of uncertainty. Our findings suggest that the often stated tension between capturing biological complexity and utilising mathematically simple models is perhaps more nuanced than generally suggested. Simple dynamical models, particularly those which include forcing terms, can give rise to incredibly complex behaviour.


Subject(s)
Communicable Diseases/immunology , Communicable Diseases/transmission , Immunity , Models, Immunological , Seasons , Humans , Nonlinear Dynamics , Stroboscopy , Time Factors
18.
Chaos ; 23(2): 023111, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23822476

ABSTRACT

The occurrence of so-called four dimensional chaos in dynamical systems represented by coupled, nonlinear, ordinary differential equations is rarely reported in the literature. In this paper, we present evidence that Liley's mesoscopic theory of the electroencephalogram (EEG), which has been used to describe brain activity in a variety of clinically relevant contexts, possesses a chaotic attractor with a Kaplan-Yorke dimension significantly larger than three. This accounts for simple, high order chaos for a physiologically admissible parameter set. Whilst the Lyapunov spectrum of the attractor has only one positive exponent, the contracting dimensions are such that the integer part of the Kaplan-Yorke dimension is three, thus giving rise to four dimensional chaos. A one-parameter bifurcation analysis with respect to the parameter corresponding to extracortical input is conducted, with results indicating that the origin of chaos is due to an inverse period doubling cascade. Hence, in the vicinity of the high order, strange attractor, the model is shown to display intermittent behavior, with random alternations between oscillatory and chaotic regimes. This phenomenon represents a possible dynamical justification of some of the typical features of clinically established EEG traces, which can arise in the case of burst suppression in anesthesia and epileptic encephalopathies in early infancy.


Subject(s)
Electrocardiography , Models, Theoretical , Nonlinear Dynamics , Humans , Time Factors
19.
BMJ Neurol Open ; 5(1): e000407, 2023.
Article in English | MEDLINE | ID: mdl-37144009

ABSTRACT

Introduction: In 2015/2016, annual national expenditure on neurological conditions exceeded $A3 billion. However, a comprehensive study of the Australian neurological workforce and supply/demand dynamics has not previously been undertaken. Methods: Current neurological workforce was defined using neurologist survey and other sources. Workforce supply modelling used ordinary differential equations to simulate neurologist influx and attrition. Demand for neurology care was estimated by reference to literature regarding incidence and prevalence of selected conditions. Differences in supply versus demand for neurological workforce were calculated. Potential interventions to increase workforce were simulated and effects on supply versus demand estimated. Results: Modelling of the workforce from 2020 to 2034 predicted an increase in neurologist number from 620 to 89. We estimated a 2034 capacity of 638 024 Initial and 1 269 112 Review encounters annually, and deficits against demand estimated as 197 137 and 881 755, respectively. These deficits were proportionately greater in regional Australia, which has 31% of Australia's population (Australian Bureau of Statistics) but is served by only 4.1% of its neurologists as determined by our 2020 survey of Australia and New Zealand Association of Neurologists members. Nationally, simulated additions to the neurology workforce had some effect on the review encounter supply deficit (37.4%), but in Regional Australia, this impact was only 17.2%. Interpretation: Modelling of the neurologist workforce in Australia for 2020-2034 demonstrates a significant shortfall of supply relative to current and projected demand. Interventions to increase neurologist workforce may attenuate this shortfall but will not eliminate it. Thus, additional interventions are needed, including improved efficiency and additional use of support staff.

20.
J Chem Phys ; 134(11): 114112, 2011 Mar 21.
Article in English | MEDLINE | ID: mdl-21428612

ABSTRACT

In this work we characterize the chaotic properties of atomic fluids subjected to planar mixed flow, which is a linear combination of planar shear and elongational flows, in a constant temperature thermodynamic ensemble. With the use of a recently developed nonequilibrium molecular dynamics algorithm, compatible and reproducible periodic boundary conditions are realized so that Lyapunov spectra analysis can be carried out for the first time. Previous studies on planar shear and elongational flows have shown that Lyapunov spectra organize in different ways, depending on the character of the defining equations of the system. Interestingly, planar mixed flow gives rise to chaotic spectra that, on one hand, contain elements common to those of shear and elongational flows but also show peculiar, unique traits. In particular, the influence of the constituent flows in regards to the conjugate-pairing rule (CPR) is analyzed. CPR is observed in homogeneously thermostated systems whose adiabatic (or unthermostated) equations of motion are symplectic. We show that the component associated with the shear tends to selectively excite some of those degrees, and is responsible for violations in the rule.


Subject(s)
Biophysics/methods , Molecular Dynamics Simulation , Rheology , Algorithms , Spectrum Analysis , Surface Properties , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL